login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257800
Sequence A233271 reduced modulo 2: a(n) = A000035(A233271(n)); the parity of each term in the infinite trunk of inverted binary beanstalk.
9
0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0
OFFSET
0
LINKS
FORMULA
a(n) = A000035(A233271(n)).
a(0) = 0; a(1) = 1; and for n > 1, a(n) = 1 - A213729(A218602(n)).
PROG
(Scheme, two variants)
(define (A257800 n) (A000035 (A233271 n)))
(define (A257800 n) (if (< n 2) (A000035 n) (- 1 (A213729 (A218602 n)))))
CROSSREFS
Cf. A257803 (positions of ones), A257804 (positions of zeros), A257807 (partial sums).
Cf. also A257799.
Sequence in context: A215531 A305386 A174998 * A284772 A051069 A051065
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 12 2015
STATUS
approved