login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257744
Smallest k such that A257743(k)=n.
1
1, 9, 33, 135, 183, 143, 95, 63, 1349, 899, 1535, 1023, 4623, 7047, 18063, 14623, 12543, 16383, 23849, 15899, 10599, 29639, 79037, 80351, 53567, 35711, 23807, 15871, 21161, 56429, 150477, 520929, 437979, 1167945, 863359, 1151145, 1097595, 1392255, 1343215
OFFSET
1,2
COMMENTS
If conjecture in comment in A257743 is true, then the sequence is infinite.
For example, if this conjecture is true, then A257743 contains 10^9. Indeed, let n_0 requires N>10^9 times of the map in the name. Then there exists n_1 which requires N-1 times of the map, there exists n_2 which requires N-2 times of the map,..., there exists n_(N-10^9+1) which requires 10^9-1 times of the map such that A257743(n_(N-10^9+1)) = 10^9. Therefore, a(10^9) exists. - Vladimir Shevelev, May 15 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..82
MATHEMATICA
oddPart:=#/2^IntegerExponent[#, 2]&;
a257743=Map[Length[NestWhileList[oddPart[3#+1]&, oddPart[#], !(PrimeQ[#]||#==1)&]]&, Range[10000]];
a257744=Flatten[Last[Reap[NestWhile[#+1&, 1, !(Sow[Position[a257743, #, 1, 1]])=={}&]]]] (*Peter J. C. Moses, May 07 2015*)
(* With function "oddPart" and Range[100000] in "a257743": *)
FirstPosition[a257743, #] & /@ Range@ 30 // Flatten (* Michael De Vlieger, May 12 2015, Version 10 *)
PROG
(PARI) stepA257743(n)=n>>=valuation(n, 2); if(isprime(n), 1, n)
A257743(n)=my(k=1); while((n=stepA257743(n))>1, n=3*n+1; k++); k
v=vector(100); for(n=1, 1e9, t=A257743(n); if(t<=#v && v[t]==0, v[t]=n; print("a("t") = "n))) \\ Charles R Greathouse IV, May 15 2015
CROSSREFS
Cf. A257743.
Sequence in context: A147147 A147154 A257284 * A147275 A140413 A097804
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 07 2015
EXTENSIONS
More terms from Peter J. C. Moses, May 07 2015
STATUS
approved