login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257686
a(0) = 0, for n >= 1: a(n) = A099563(n) * A048764(n).
3
0, 1, 2, 2, 4, 4, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 18, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 72
OFFSET
0,3
COMMENTS
For n >= 1, a(n) = the smallest term of A051683 >= n.
Can also be obtained by replacing with zeros all other digits except the first (the most significant) in the factorial base representation of n (A007623), then converting back to decimal.
Useful when computing A257687.
LINKS
FORMULA
a(0) = 0, and for n >= 1: a(n) = A099563(n) * A048764(n).
Other identities:
For all n >= 0, a(n) = n - A257687(n).
a(n) = A000030(A007623(n))*(A055642(A007623(n)))! - Indranil Ghosh, Jun 21 2017
EXAMPLE
Factorial base representation (A007623) of 2 is "10", zeroing all except the most significant digit does not change anything, thus a(2) = 2.
Factorial base representation (A007623) of 3 is "11", zeroing all except the most significant digit gives "10", thus a(3) = 2.
Factorial base representation of 23 is "321", zeroing all except the most significant digit gives "300" which is factorial base representation of 18, thus a(23) = 18.
PROG
(Scheme) (define (A257686 n) (if (zero? n) n (* (A099563 n) (A048764 n))))
(Python)
from sympy import factorial as f
def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
def a(n):
x=str(a007623(n))
return int(x[0])*f(len(x))
print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 21 2017
CROSSREFS
Cf. also A053644 (analogous sequence for base-2).
Sequence in context: A347661 A007730 A330271 * A057144 A198332 A080606
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 04 2015
STATUS
approved