login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257680
Characteristic function for A256450: 1 if there is at least one 1-digit present in the factorial representation of n (A007623), otherwise 0.
19
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1
OFFSET
0
LINKS
FORMULA
a(0) = 0; for n >= 1, if A099563(n) = 1, then a(n) = 1, otherwise a(n) = a(A257687(n)).
Other identities:
a(2n+1) = 1 for all n. [Because all odd numbers end with digit 1 in factorial base.]
MATHEMATICA
a[n_] := Module[{k = n, m = 2, c = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r == 1, c++]; m++]; If[c > 0, 1, 0]]; Array[a, 100, 0] (* Amiram Eldar, Jan 23 2024 *)
PROG
(Scheme)
(define (A257680 n) (let loop ((n n) (i 2)) (cond ((zero? n) 0) ((= 1 (modulo n i)) 1) (else (loop (floor->exact (/ n i)) (+ 1 i))))))
;; As a recurrence utilizing memoizing definec-macro:
(definec (A257680 n) (cond ((zero? n) 0) ((= 1 (A099563 n)) 1) (else (A257680 (A257687 n)))))
(Python)
def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
def a(n): return 1 if '1' in str(a007623(n)) else 0
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017
CROSSREFS
Characteristic function of A256450.
Cf. A255411 (gives the positions of zeros), A257682 (partial sums).
Sequence in context: A351039 A022930 A285596 * A323377 A068344 A161382
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 04 2015
STATUS
approved