login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
28

%I #57 Jun 23 2023 04:09:03

%S 1,1,1,1,1,1,1,1,2,1,1,1,3,6,1,1,1,4,21,24,1,1,1,5,55,282,120,1,1,1,6,

%T 120,2008,6210,720,1,1,1,7,231,10147,153040,202410,5040,1,1,1,8,406,

%U 40176,2224955,20933840,9135630,40320,1,1,1,9,666,132724,22069251,1047649905,4662857360,545007960,362880,1

%N Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

%C Also the number of ordered factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity). A(2,2) = 3: (2*3)^2 = 36 = 4*9 = 6*6 = 9*4.

%H Alois P. Heinz, <a href="/A257493/b257493.txt">Antidiagonals n = 0..20, flattened</a>

%H E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, <a href="https://arxiv.org/abs/1508.03673">A generalization of Eulerian numbers via rook placements</a>, arXiv:1508.03673 [math.CO], 2015.

%H D. M. Jackson & G. H. J. van Rees, <a href="/A002817/a002817.pdf">The enumeration of generalized double stochastic nonnegative integer square matrices</a>, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)

%H Richard J. Mathar, <a href="https://arxiv.org/abs/1903.12477">2-regular Digraphs of the Lovelock Lagrangian</a>, arXiv:1903.12477 [math.GM], 2019.

%H Dennis Pixton, <a href="http://people.math.binghamton.edu/dennis/Birkhoff/polynomials.html">Ehrhart polynomials for n = 1, ..., 9</a>

%H M. L. Stein and P. R. Stein, <a href="/A001496/a001496.pdf">Enumeration of Stochastic Matrices with Integer Elements</a>, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 3, 4, 5, 6, 7, ...

%e 1, 6, 21, 55, 120, 231, 406, ...

%e 1, 24, 282, 2008, 10147, 40176, 132724, ...

%e 1, 120, 6210, 153040, 2224955, 22069251, 164176640, ...

%e 1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...

%p with(numtheory):

%p b:= proc(n, k) option remember; `if`(n=1, 1, add(

%p `if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n)))

%p end:

%p A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k):

%p seq(seq(A(n, d-n), n=0..d), d=0..8);

%t b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 20 2016, after _Alois P. Heinz_ *)

%o (Sage)

%o bigomega = sloane.A001222

%o @cached_function

%o def b(n, k):

%o if n == 1:

%o return 1

%o return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors())

%o def A(n, k):

%o return b(prod(nth_prime(i) for i in (1..n))^k, k)

%o [A(n, d-n) for d in (0..10) for n in (0..d)] # _Freddy Barrera_, Dec 27 2018, translated from Maple

%o (Sage)

%o from sage.combinat.integer_matrices import IntegerMatrices

%o [IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # _Freddy Barrera_, Dec 27 2018

%o (PARI)

%o T(n, k)={

%o local(M=Map(Mat([n, 1])));

%o my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));

%o my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));

%o for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])

%o } \\ _Andrew Howroyd_, Apr 04 2020

%Y Columns k=0-9 give: A000012, A000142, A000681, A001500, A172806, A172862, A172894, A172919, A172944, A172958.

%Y Rows n=0+1, 2-9 give: A000012, A000027(k+1), A002817(k+1), A001496, A003438, A003439, A008552, A160318, A160319.

%Y Main diagonal gives A110058.

%Y Cf. A257463 (unordered factorizations), A333733 (non-isomorphic matrices), A008300 (binary matrices).

%K nonn,tabl

%O 0,9

%A _Alois P. Heinz_, Apr 26 2015