login
A257446
Number of (n+2) X (7+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 1 and no column sum 1.
1
128, 134, 143, 155, 173, 200, 239, 296, 380, 503, 683, 947, 1334, 1901, 2732, 3950, 5735, 8351, 12185, 17804, 26039, 38108, 55796, 81719, 119711, 175391, 256994, 376589, 551864, 808742, 1185215, 1736963, 2545589, 3730688, 5467535, 8013008
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4).
Empirical g.f.: x*(128 - 122*x + 3*x^2 - 125*x^3) / ((1 - x)*(1 - x - x^3)). - Colin Barker, Dec 21 2018
EXAMPLE
Some solutions for n=4:
..0..1..1..1..0..1..1..1..1....0..1..1..0..1..1..0..1..1
..0..0..0..0..0..0..0..0..0....0..1..1..0..1..1..0..1..1
..0..1..1..1..0..1..1..1..1....0..1..1..0..1..1..0..1..1
..0..1..1..1..0..1..1..1..1....0..1..1..0..1..1..0..1..1
..0..0..0..0..0..0..0..0..0....0..1..1..0..1..1..0..1..1
..0..1..1..1..0..1..1..1..1....0..1..1..0..1..1..0..1..1
CROSSREFS
Column 7 of A257447.
Sequence in context: A217847 A223591 A097758 * A130445 A114565 A243812
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 23 2015
STATUS
approved