login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A257445
Number of (n+2) X (6+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 1 and no column sum 1.
1
90, 95, 104, 116, 134, 161, 200, 257, 341, 464, 644, 908, 1295, 1862, 2693, 3911, 5696, 8312, 12146, 17765, 26000, 38069, 55757, 81680, 119672, 175352, 256955, 376550, 551825, 808703, 1185176, 1736924, 2545550, 3730649, 5467496, 8012969, 11743541
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>5.
Empirical g.f.: x*(90 - 85*x + 4*x^2 - 87*x^3 + x^4) / ((1 - x)*(1 - x - x^3)). - Colin Barker, Dec 21 2018
EXAMPLE
Some solutions for n=4:
..1..1..1..1..1..1..1..0....0..0..0..0..0..0..0..0....1..1..1..1..1..1..1..1
..1..1..1..1..1..1..1..0....0..1..1..0..1..1..0..1....1..1..1..1..1..1..1..1
..0..0..0..0..0..0..0..0....0..1..1..0..1..1..0..1....0..0..0..0..0..0..0..0
..1..1..1..1..1..1..1..0....0..1..1..0..1..1..0..1....1..1..1..1..1..1..1..1
..1..1..1..1..1..1..1..0....0..0..0..0..0..0..0..0....1..1..1..1..1..1..1..1
..0..0..0..0..0..0..0..0....0..1..1..0..1..1..0..1....0..0..0..0..0..0..0..0
CROSSREFS
Column 6 of A257447.
Sequence in context: A271233 A050652 A025377 * A138692 A057455 A088470
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 23 2015
STATUS
approved