login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal minimum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14

%I #4 Apr 22 2015 10:41:45

%S 512,2616,2616,10684,7652,10684,41140,27244,30309,41140,150016,103575,

%T 117324,119393,150016,514920,367929,450756,449022,403951,514920,

%U 1700100,1246585,1557227,1770206,1290910,1293242,1700100,5487356,4137316,5347670

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal minimum nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Table starts

%C ......512......2616.....10684.....41140.....150016.....514920.....1700100

%C .....2616......7652.....27244....103575.....367929....1246585.....4137316

%C ....10684.....30309....117324....450756....1557227....5347670....18009368

%C ....41140....119393....449022...1770206....5985744...19771628....64652177

%C ...150016....403951...1290910...4442466...12316842...39029574...121832476

%C ...514920...1293242...3917190..13233402...36423140..115919394...356678661

%C ..1700100...4098078..11883298..36058660...96141548..317271378..1037269100

%C ..5487356..12497488..33766938..94181694..259492076..756210536..2359203628

%C .17402796..37528750..96478988.259847932..731002818.2131836574..7099788830

%C .54388900.111339861.272492320.722844592.2006564512.5828147664.18202585668

%H R. H. Hardin, <a href="/A257426/b257426.txt">Table of n, a(n) for n = 1..338</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 36]

%F k=2: [order 47] for n>56

%F k=3: [order 88] for n>94

%F Empirical for row n:

%F n=1: [same linear recurrence of order 36]

%F n=2: [order 54] for n>66

%e Some solutions for n=3 k=4

%e ..0..0..0..0..1..1....0..0..0..0..1..1....0..0..0..1..0..0....0..0..0..0..0..0

%e ..0..0..1..0..0..1....0..0..0..0..1..1....1..1..1..1..0..0....0..0..1..0..0..0

%e ..1..1..1..0..1..1....0..0..0..0..0..0....0..1..0..0..1..1....1..0..0..0..1..1

%e ..0..1..1..1..1..0....1..1..0..1..1..1....0..1..0..1..1..0....1..1..1..1..1..1

%e ..0..1..0..0..0..1....0..0..0..1..0..0....0..1..1..1..0..1....1..1..0..1..1..1

%Y Column 1 and row 1 are A254235

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Apr 22 2015