login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A257426
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal minimum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
512, 2616, 2616, 10684, 7652, 10684, 41140, 27244, 30309, 41140, 150016, 103575, 117324, 119393, 150016, 514920, 367929, 450756, 449022, 403951, 514920, 1700100, 1246585, 1557227, 1770206, 1290910, 1293242, 1700100, 5487356, 4137316, 5347670
OFFSET
1,1
COMMENTS
Table starts
......512......2616.....10684.....41140.....150016.....514920.....1700100
.....2616......7652.....27244....103575.....367929....1246585.....4137316
....10684.....30309....117324....450756....1557227....5347670....18009368
....41140....119393....449022...1770206....5985744...19771628....64652177
...150016....403951...1290910...4442466...12316842...39029574...121832476
...514920...1293242...3917190..13233402...36423140..115919394...356678661
..1700100...4098078..11883298..36058660...96141548..317271378..1037269100
..5487356..12497488..33766938..94181694..259492076..756210536..2359203628
.17402796..37528750..96478988.259847932..731002818.2131836574..7099788830
.54388900.111339861.272492320.722844592.2006564512.5828147664.18202585668
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 36]
k=2: [order 47] for n>56
k=3: [order 88] for n>94
Empirical for row n:
n=1: [same linear recurrence of order 36]
n=2: [order 54] for n>66
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0..1..1....0..0..0..0..1..1....0..0..0..1..0..0....0..0..0..0..0..0
..0..0..1..0..0..1....0..0..0..0..1..1....1..1..1..1..0..0....0..0..1..0..0..0
..1..1..1..0..1..1....0..0..0..0..0..0....0..1..0..0..1..1....1..0..0..0..1..1
..0..1..1..1..1..0....1..1..0..1..1..1....0..1..0..1..1..0....1..1..1..1..1..1
..0..1..0..0..0..1....0..0..0..1..0..0....0..1..1..1..0..1....1..1..0..1..1..1
CROSSREFS
Column 1 and row 1 are A254235
Sequence in context: A255036 A256954 A255029 * A254242 A254235 A254775
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 22 2015
STATUS
approved