login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(row,col) = (1/2) * (A255127(row,col+1) - A255127(row,col)): half of the first differences of each row of Ludic array.
4

%I #11 Sep 20 2016 13:27:15

%S 1,1,3,1,3,7,1,3,8,12,1,3,7,14,22,1,3,8,13,24,30,1,3,7,14,24,30,42,1,

%T 3,8,12,26,32,43,61,1,3,7,13,24,33,47,63,71,1,3,8,14,24,31,43,66,72,

%U 88,1,3,7,13,22,30,47,60,73,83,108,1,3,8,12,24,32,43,66,71,90,117,126

%N Square array A(row,col) = (1/2) * (A255127(row,col+1) - A255127(row,col)): half of the first differences of each row of Ludic array.

%C The array A(row,col) is read by downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

%H Antti Karttunen, <a href="/A257258/b257258.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of the array</a>

%F A(row,col) = (1/2) * (A255127(row,col+1) - A255127(row,col)).

%F A(row,col) = A257257(row,col)/2.

%e The top left corner of the array:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

%e 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

%e 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8

%e 12, 14, 13, 14, 12, 13, 14, 13, 12, 14, 13, 14, 12, 13, 14, 13

%e 22, 24, 24, 26, 24, 24, 22, 24, 26, 24, 24, 24, 22, 26, 24, 24

%e 30, 30, 32, 33, 31, 30, 32, 31, 30, 35, 30, 30, 31, 32, 30, 33

%e 42, 43, 47, 43, 47, 43, 41, 46, 44, 46, 44, 45, 45, 42, 45, 45

%e 61, 63, 66, 60, 66, 63, 65, 63, 60, 66, 64, 63, 65, 64, 63, 65

%e 71, 72, 73, 71, 73, 69, 75, 74, 70, 74, 73, 69, 75, 69, 75, 74

%e 88, 83, 90, 84, 88, 89, 85, 89, 85, 90, 87, 86, 88, 89, 88, 87

%e 108, 117, 113, 121, 114, 113, 120, 109, 117, 123, 110, 115, 117, 113, 117, 118

%e 126, 135, 127, 137, 129, 127, 129, 138, 131, 133, 129, 128, 132, 138, 132, 132

%e 137, 142, 134, 142, 152, 135, 141, 139, 147, 141, 141, 138, 141, 144, 146, 138

%e 154, 158, 157, 158, 160, 158, 156, 154, 162, 168, 158, 151, 158, 157, 161, 157

%e 180, 180, 177, 184, 180, 186, 185, 184, 176, 180, 190, 177, 185, 190, 176, 184

%e 206, 217, 212, 210, 213, 220, 213, 210, 216, 212, 211, 222, 212, 211, 215, 213

%e ...

%o (Scheme)

%o (define (A257258 n) (A257258bi (A002260 n) (A004736 n)))

%o (define (A257258bi row col) (* (/ 1 2) (- (A255127bi row (+ 1 col)) (A255127bi row col)))) ;; Code for A255127bi given in A255127.

%Y Column 1: A256483.

%Y Cf. A255127, A257257 (same array but with terms multiplied by 2).

%K nonn,tabl

%O 1,3

%A _Antti Karttunen_, Apr 29 2015