Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Apr 19 2015 22:25:04
%S 2,3,3,3,3,5,3,3,3,5,7,7,3,3,7,3,5,3,5,5,11,3,13,3,13,5,11,3,7,3,13,3,
%T 13,3,5,5,11,23,3,7,3,7,3,7,3,31,3,7,13,3,7,5,7,3,31,31,3,13,41,5,3,7,
%U 19,3,7,41,41,3,19,7,29,5,3,13,11,5,3,19,3,5,5
%N Even bisection of A257244: a(n) = A257244(2n).
%H Antti Karttunen, <a href="/A257246/b257246.txt">Table of n, a(n) for n = 1..2047</a>
%H <a href="https://oeis.org/plot2a?name1=A257246&name2=A257245&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true">Ratio a(n)/A257245(n) plotted with OEIS Plot2-script</a>
%F a(n) = A257244(2n).
%F a(n) = A020639(A256393(2n)). [Equally, the smallest prime factor of A256393(2n).]
%F Other identities and observations:
%F For all n >= 1, a(n) <= A257245(n).
%o (Scheme, alternative definitions)
%o (define (A257246 n) (A257244 (+ n n)))
%o (define (A257246 n) (A020639 (A256393 (+ n n))))
%Y Cf. A020639, A256393, A257244.
%Y Cf. also A257245 (the other bisection), A257247 (gives the positions where both bisections have the same value).
%K nonn
%O 1,1
%A _Antti Karttunen_, Apr 19 2015