



2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 3, 3, 3, 3, 3, 5, 5, 7, 7, 7, 7, 7, 3, 3, 3, 19, 7, 7, 3, 5, 5, 5, 3, 7, 5, 5, 5, 19, 11, 11, 3, 13, 13, 13, 3, 23, 13, 13, 5, 11, 11, 11, 3, 61, 7, 31, 3, 13, 13, 19, 3, 43, 13, 13, 3, 7, 5, 5, 5, 61, 11, 31, 23, 23, 3, 127, 7, 7, 3, 151, 7, 19, 3, 181, 7, 13, 3, 43, 31, 31
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sequence gives the differences between the successive terms of A256393, each difference being equal to their unique shared prime factor.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..4095


FORMULA

a(n) = A256393(n+1)  A256393(n).
a(n) = gcd(A256393(n+1), A256393(n)).


MATHEMATICA

f[n_] := Block[{pf = First /@ FactorInteger@ n},
If[EvenQ@ n, Max@ pf, Min@ pf]]; s = {2}; lmt = 94; For[k = 2,
k <= lmt, k++, AppendTo[s, s[[k  1]] + f@ s[[k  1]]]]; Abs[
Subtract @@@ Partition[s, 2, 1]] (* Michael De Vlieger, Apr 19 2015 *)


PROG

(Scheme, two alternatives)
(define (A257244 n) ( (A256393 (+ n 1)) (A256393 n)))
(define (A257244 n) (gcd (A256393 (+ n 1)) (A256393 n)))
(Haskell)
a257244 n = a257244_list !! (n1)
a257244_list = zipWith gcd a256393_list $ tail a256393_list
 Reinhard Zumkeller, May 06 2015


CROSSREFS

Cf. A257245, A257246 (bisections), A257247 (positions where they coincide).
Cf. A256393.
Sequence in context: A072375 A340500 A131981 * A130147 A345377 A096143
Adjacent sequences: A257241 A257242 A257243 * A257245 A257246 A257247


KEYWORD

nonn


AUTHOR

Antti Karttunen, Apr 19 2015


STATUS

approved



