login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257244 First differences of A256393: a(n) = A256393(n+1) - A256393(n). 5
2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 3, 3, 3, 3, 3, 5, 5, 7, 7, 7, 7, 7, 3, 3, 3, 19, 7, 7, 3, 5, 5, 5, 3, 7, 5, 5, 5, 19, 11, 11, 3, 13, 13, 13, 3, 23, 13, 13, 5, 11, 11, 11, 3, 61, 7, 31, 3, 13, 13, 19, 3, 43, 13, 13, 3, 7, 5, 5, 5, 61, 11, 31, 23, 23, 3, 127, 7, 7, 3, 151, 7, 19, 3, 181, 7, 13, 3, 43, 31, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence gives the differences between the successive terms of A256393, each difference being equal to their unique shared prime factor.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..4095

FORMULA

a(n) = A256393(n+1) - A256393(n).

a(n) = gcd(A256393(n+1), A256393(n)).

MATHEMATICA

f[n_] := Block[{pf = First /@ FactorInteger@ n},

  If[EvenQ@ n, Max@ pf, Min@ pf]]; s = {2}; lmt = 94; For[k = 2,

k <= lmt, k++, AppendTo[s, s[[k - 1]] + f@ s[[k - 1]]]]; Abs[

Subtract @@@ Partition[s, 2, 1]] (* Michael De Vlieger, Apr 19 2015 *)

PROG

(Scheme, two alternatives)

(define (A257244 n) (- (A256393 (+ n 1)) (A256393 n)))

(define (A257244 n) (gcd (A256393 (+ n 1)) (A256393 n)))

(Haskell)

a257244 n = a257244_list !! (n-1)

a257244_list = zipWith gcd a256393_list $ tail a256393_list

-- Reinhard Zumkeller, May 06 2015

CROSSREFS

Cf. A257245, A257246 (bisections), A257247 (positions where they coincide).

Cf. A256393.

Sequence in context: A280617 A072375 A131981 * A130147 A096143 A025792

Adjacent sequences:  A257241 A257242 A257243 * A257245 A257246 A257247

KEYWORD

nonn

AUTHOR

Antti Karttunen, Apr 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 01:27 EDT 2020. Contains 334828 sequences. (Running on oeis4.)