login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257178
Number of 3-Motzkin paths of length n with no level steps at odd level.
4
1, 3, 10, 33, 110, 369, 1247, 4245, 14558, 50295, 175029, 613467, 2165100, 7692345, 27504600, 98941185, 357952580, 1301960925, 4759282415, 17478557925, 64468072820, 238736987535, 887359113700, 3309489922743, 12381998910700, 46460457776739
OFFSET
0,2
LINKS
FORMULA
a(n)= Sum_{i=0..floor(n/2)}3^(n-2i)*C(i)*binomial(n-i,i), where C(n) is the n-th Catalan number A000108.
G.f.: (1-3*z-sqrt((1-3*z)*(1-3*z-4*z^2)))/(2*z^2*(1-3*z)).
a(n) ~ sqrt(5) * 4^(n+1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (n+2)*a(n) +6*(-n-1)*a(n-1) +(5*n+4)*a(n-2) +6*(2*n-3)*a(n-3)=0. - R. J. Mathar, Sep 24 2016
G.f. A(x) satisfies: A(x) = 1/(1 - 3*x) + x^2 * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020
EXAMPLE
For n=2 we have 10 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(2)H(1), H(2)H(2), H(2)H(3), H(3)H(1), H(3)H(2), H(3)H(3) and UD.
MATHEMATICA
CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4x^2)])/(2*x^2*(1-3*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
PROG
(PARI) Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2*(1-3*x)) + O(x^50)) \\ G. C. Greubel, Feb 05 2017
CROSSREFS
Sequence in context: A289450 A113299 A126931 * A257363 A071722 A058987
KEYWORD
nonn
AUTHOR
STATUS
approved