login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257179
Expansion of (1 + x^5) / ((1 - x) * (1 + x^4)) in powers of x.
4
1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1
OFFSET
0,9
FORMULA
Euler transform of length 10 sequence [1, 0, 0, -1, 1, 0, 0, 1, 0, -1].
Moebius transform is length 8 sequence [1, 0, 0, -1, 0, 0, 0, 2].
a(n) is multiplicative with a(2) = 1, a(4) = 0, a(2^e) = 2 if e>2, a(p^e) = 1 if p>2 and a(0) = 1.
G.f.: (1 + x^5) / ((1 - x) * (1 + x^4)).
G.f.: (1 - x^4) * (1 - x^10) / ((1 - x) * (1 - x^5) * (1 - x^8)).
G.f.: -1 + 1 / (1 - x) + 1 / (1 + x^4).
a(n) = a(-n) for all n in Z. a(n+8) = a(n) unless n=0 or n=-8. a(8*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1. a(8*n + 4) = 0.
a(n) = A259042(n+4) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(s)*(1-1/4^s+2/8^s). - Amiram Eldar, Jan 05 2023
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + x^11 + ...
MATHEMATICA
a[ n_] := Boole[n != 0] - Boole[Mod[n, 4] == 0] + 2 Boole[Mod[n, 8] == 0];
a[ n_] := -Boole[n == 0] + {1, 1, 1, 0, 1, 1, 1, 2}[[Mod[n, 8, 1]]];
a[ n_] := SeriesCoefficient[ (1 + x^5) / ((1 - x) * (1 + x^4)), {x, 0, Abs@n}];
PROG
(PARI) {a(n) = (n != 0) - (n%4 == 0) + 2*(n%8 == 0)};
(PARI) {a(n) = -(n==0) + [2, 1, 1, 1, 0, 1, 1, 1][n%8 + 1]};
(PARI) {a(n) = polcoeff( (1 + x^5) / ((1 - x) * (1 + x^4)) + x * O(x^abs(n)), abs(n))};
CROSSREFS
Sequence in context: A326695 A343749 A323191 * A259042 A350074 A333179
KEYWORD
nonn,mult,easy
AUTHOR
Michael Somos, Apr 17 2015
EXTENSIONS
More terms from Antti Karttunen, Jul 29 2018
STATUS
approved