login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257172
Consider numbers n = concat(w,x,y,z) such that w*x*y*z | n. Leading zeros in x, y and z allowed. Sequence lists numbers that admit at least two such concatenations.
0
11424, 13248, 14112, 16128, 16632, 17136, 18144, 41328, 91728, 101112, 102144, 102816, 104832, 106272, 111012, 111375, 112288, 112896, 114048, 114240, 114912, 116160, 116928, 123120, 132480, 140112, 141120, 161280, 166320, 171171, 171360, 181440, 203112, 204288, 204336, 220416, 231012, 233772, 239616
OFFSET
1,1
EXAMPLE
11424 / (1*1*4*24)=119, 11424 / (1*1*42*4)=68 and 11424 / (1 14*2*4) but 11424 / (11*4*2*4) is 357/11, not an integer. So 11424 is the concatenation of three sets of four integers whose products divide 11424.
MAPLE
with(numtheory); P:=proc(q) local a, ab, b, c, cd, d, i, j, k, m, n, v, w, z;
v:=array(1..10, 1..4); w:=[]; for n from 1 to q do j:=0;
for i from 1 to ilog10(n) do c:=(n mod 10^i); ab:=trunc(n/10^i);
for k from 1 to ilog10(ab) do d:=(ab mod 10^k); cd:=trunc(ab/10^k);
for z from 1 to ilog10(cd) do a:=trunc(cd/10^z); b:=cd-a*10^z;
if a*b*c*d>0 then if type(n/(a*b*c*d), integer) then j:=j+1;
w:=sort([a, b, c, d]); for m from 1 to 4 do v[j, m]:=w[m]; od;
for m from 1 to j-1 do if v[m, 1]=v[j, 1] and v[m, 2]=v[j, 2] and v[m, 3]=v[j, 3] and v[m, 4]=v[j, 4]
then j:=j-1; break; fi; od; fi; fi; od; od; od;
if j>1 then print(n); fi; od; end: P(10^9);
MATHEMATICA
fQ[n_] := Block[{id = IntegerDigits@ n}, lng = Length@ id; t = Times @@@ Union[ Sort /@ Partition[ Flatten@ Table[{FromDigits@ Take[id, {1, i}], FromDigits@ Take[id, {i + 1, j}], FromDigits@ Take[id, {j + 1, k}], FromDigits@ Take[id, {k + 1, lng}]}, {i, 1, lng - 3}, {j, i + 1, lng - 2}, {k, j + 1, lng - 1}], 4]]; Count[IntegerQ /@ (n/t), True] > 1]; k = 1000; lst = {}; While[k < 100000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst
CROSSREFS
Cf. A256518.
Sequence in context: A157655 A262399 A115753 * A269217 A154064 A140922
KEYWORD
nonn,base
AUTHOR
STATUS
approved