login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257072
Number of 3-colored Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.
1
1, 4, 17, 77, 374, 1959, 11085, 67500, 438485, 3004985, 21485222, 158744467, 1202966761, 9297312916, 72981656937, 580105886517, 4658713796790, 37736326098735, 307913254091925, 2528335636842300, 20875157745756429
OFFSET
0,2
LINKS
FORMULA
G.f.: 8/(7-27*z+sqrt(1-10*z+9*z^2))=1/(1-3*z-z*F(z)), where F(z) is the g.f. of the sequence A059231.
a(n) = (3^n+Sum_{m=1..n}(m*Sum_{j=0..n-m}(((Sum_{k=0..j}(binomial(j+m,k)*binomial(j-1,j-k)*4^(j-k)))*3^(n-j-m)*binomial(n-j,m))/(j+m)))). - Vladimir Kruchinin, Mar 13 2016
a(n) ~ sqrt(2)*3^(2*n-1) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 13 2016
From Benedict W. J. Irwin, May 29 2016: (Start)
Let y(0)=1/8, y(1)=1/2, y(2)=17/8, y(3)=77/8, y(4)=187/4,
Let 3645*(n+1)*(n+2)*y(n)-(5508n^2+21384n+20736)*y(n+1)+(2061n^2+7857n+6120)*y(n+2)-(175n^2+165n-1330)*y(n+3)-(26n^2+270n+664)*y(n+4)+3*(n+4)*(n+5)*y(n+5) = 0,
a(n) = 8*y(n).
(End)
Conjecture: 3*n*a(n) +(-53*n+45)*a(n-1) +2*(151*n-213)*a(n-2) +9*(-73*n+144)*a(n-3) +405*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 24 2016
EXAMPLE
a(1) = 4 because we have H1, H2, H2, UD.
MATHEMATICA
Table[8 DifferenceRoot[Function[{y, n}, {3645 (1 + n) (2 + n) y[n] + (-20736 - 21384 n - 5508 n^2) y[1 + n] + (6120 + 7857 n + 2061 n^2) y[2 + n] + (1330 - 165 n - 175 n^2) y[3 + n] + (-664 - 270 n - 26 n^2) y[4 + n] + 3 (4 + n) (5 + n) y[5 + n] == 0, y[0] == 1/8, y[1] == 1/2, y[2] == 17/8, y[3] == 77/8, y[4] == 187/4}]][k], {k, 0, 20}] (* Benedict W. J. Irwin, May 29 2016 *)
CoefficientList[Series[8/(7 -27*x +Sqrt[1 -10*x +9*x^2]), {x, 0, 50}], x] (* G. C. Greubel, May 29 2016 *)
PROG
(Maxima)
a(n):=(sum(m*sum(((sum(binomial(j+m, k)*binomial(j-1, j-k)*4^(j-k), k, 0, j))*3^(n-j-m)*binomial(n-j, m))/(j+m), j, 0, n-m), m, 1, n))+3^n; /* Vladimir Kruchinin, Mar 13 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved