login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224071
Number of Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.
3
1, 2, 5, 15, 52, 201, 841, 3726, 17213, 82047, 400600, 1993377, 10071777, 51532938, 266462229, 1390174911, 7308741084, 38682855225, 205940368441, 1102091393574, 5925177392573, 31987877317887, 173337754977904
OFFSET
0,2
COMMENTS
Hankel transform is A006215. Invert transform of A155069. - Michael Somos, Apr 02 2013
LINKS
J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO], 2012; Theorem 6.1.
Paul Barry, A study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms, Ph.D Thesis, University College, Cork, Republic of Ireland, 2009.
Arnauld Mesinga Mwafise, Computational and Combinatorial Enumeration of Poset Matrices, 2024. See p. 8.
FORMULA
G.f.: 4/(3-5*x+sqrt(1-6*x+x^2)).
Recurrence: n*a(n) = 9*(n-1)*a(n-1) - 2*(11*n-15)*a(n-2) + 3*(7*n-12)*a(n-3) - 3*(n-3)*a(n-4). - Vaclav Kotesovec, May 23 2013
a(n) ~ sqrt(884+627*sqrt(2)) * (3+2*sqrt(2))^n / (98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 23 2013
0 = +a(n)*(+9*a(n+1) - 144*a(n+2) + 174*a(n+3) - 81*a(n+4) + 12*a(n+5)) + a(n+1)*(+18*a(n+1) + 399*a(n+2) - 597*a(n+3) + 318*a(n+4) - 57*a(n+5)) + a(n+2)*(-300*a(n+2) + 538*a(n+3) - 255*a(n+4) + 52*a(n+5)) + a(n+3)*(-126*a(n+3) + 73*a(n+4) - 18*a(n+5)) + a(n+4)*(+a(n+5)) if n>=0. - Michael Somos, Mar 28 2014
a(n) = Sum_{k=0..n}((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*Sum_{i=0..n-k}(binomial(n+1,n-k-i)*binomial(n+i,n)))/(2*(n+1)). - Vladimir Kruchinin, Mar 08 2016
EXAMPLE
a(2) = 5 because we have HH, UDH, HUD, UDUD and UUDD.
G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 52*x^4 + 201*x^5 + 841*x^6 + ...
MATHEMATICA
CoefficientList[Series[4/(3-5*x+Sqrt[x^2-6*x+1]), {x, 0, 20}], x] (* Vaclav Kotesovec, May 23 2013 *)
a[ n_] := SeriesCoefficient[ (3 - 5 x - Sqrt[ 1 - 6 x + x^2]) / (2 - 6 x + 6 x^2), {x, 0, n}]; (* Michael Somos, Mar 28 2014 *)
PROG
(PARI) z='z+O('z^66); Vec(4/(3-5*z+sqrt(1-6*z+z^2))) /* Joerg Arndt, Mar 30 2013 */
(Maxima)
a(n):=sum((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*sum(binomial(n+1, n-k-i)*binomial(n+i, n), i, 0, n-k), k, 0, n)/(2*(n+1)); /* Vladimir Kruchinin, Mar 08 2016*/
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved