login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that R_(k+2) + 3*10^k is prime, where R_k = 11...1 is the repunit (A002275) of length k.
0

%I #16 Sep 08 2022 08:46:12

%S 9,26,1268,14391

%N Numbers k such that R_(k+2) + 3*10^k is prime, where R_k = 11...1 is the repunit (A002275) of length k.

%C Also, numbers k such that (127*10^k - 1)/9 is prime.

%C Terms from Kamada.

%C a(5) > 250000.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/abaaa.htm">Near-repdigit numbers of the form ABAA...AA</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/1/14111.htm#prime">Prime numbers of the form 1411...11</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%e For k=9, R_11 + 3*10^9 = 11111111111 + 3000000000 = 14111111111 which is prime.

%t Select[Range[0, 250000], PrimeQ[(127*10^#-1)/9 ] &]

%o (Magma) [n: n in [0..300] | IsPrime((127*10^n-1) div 9)]; // _Vincenzo Librandi_, Apr 14 2015

%o (PARI) for(n=0,400,if(isprime((127*10^n-1)/9),print1(n,", "))) \\ _Derek Orr_, Apr 14 2015

%Y Cf. A002275.

%K more,hard,nonn

%O 1,1

%A _Robert Price_, Apr 13 2015