login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that 7*R_k - 10 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
0

%I #14 Feb 01 2023 18:07:21

%S 2,11,24,42,56,336,738,2712,3498,8984,14036,46439

%N Numbers k such that 7*R_k - 10 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

%C Also, numbers k such that (7*10^k - 97)/9 is prime.

%C Terms from Kamada.

%C a(12) > 30000.

%C a(13) > 2*10^5. - _Tyler Busby_, Feb 01 2023

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/aaaba.htm">Near-repdigit numbers of the form AA...AABA</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/77767.htm#prime">Prime numbers of the form 77...7767</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%e For k=11, 7*R_11 - 10 = 77777777777 - 10 = 77777777767 which is prime.

%t Select[Range[0, 30000], PrimeQ[(7*10^# - 97)/9] &]

%Y Cf. A002275.

%K more,hard,nonn

%O 1,1

%A _Robert Price_, Apr 12 2015

%E a(12) from _Tyler Busby_, Feb 01 2023