login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256876
Numbers divisible by prime(d) for each digit d in their base-6 representation, none of which may be zero.
2
15, 28, 154, 280, 525, 555, 735, 910, 1036, 1078, 1666, 3795, 4270, 4665, 4690, 5446, 5530, 5572, 5775, 5950, 6202, 7755, 9352, 9982, 10108, 13888, 14014, 15400, 18705, 18885, 18915, 19965, 19995, 20175, 20475, 20625, 21735, 21945, 22605, 26445, 26475, 26565, 26655, 27735, 27995, 28000, 28035
OFFSET
1,1
COMMENTS
Base-6 analog of A256786. See A256874 - A256879 for the base-4, ..., base-9 analogs.
See A256866 for a variant where divisibility by prime(d+1) is required instead.
Since digit 0 is not allowed, no terms are divisible by 6, so digits 1 and 2 can't both be present. - Robert Israel, Apr 04 2024
LINKS
MAPLE
P:= [2, 3, 5, 7, 11]:
filter6:= proc(n) local S, s;
S:= convert(convert(n, base, 6), set);
if member(0, S) then return false fi;
n mod mul(P[s], s=S) = 0
end proc:
S1:= {1}; S2:= {2}; S0:= {3, 4, 5}: R:= select(filter6, S0 union S1 union S2):
for i from 2 to 10 do
S1:= map(t -> (6*t+1, 6*t+3, 6*t+4, 6*t+5), S1) union map(t -> 6*t+1, S0);
S2:= map(t -> (6*t+2, 6*t+3, 6*t+4, 6*t+5), S2) union map(t -> 6*t+2, S0);
S0:= map(t -> (6*t+3, 6*t+4, 6*t+5), S0);
R:= R union select(filter6, S0) union select(filter6, S1) union select(filter6, S2);
od:
sort(convert(R, list)); # Robert Israel, Apr 04 2024
MATHEMATICA
ndpQ[n_]:=Module[{ds=Union[IntegerDigits[n, 6]]}, FreeQ[ds, 0]&&And@@ Table[ Divisible[n, Prime[i]], {i, ds}]]; Select[Range[20000], ndpQ] (* Harvey P. Dale, May 29 2015 *)
PROG
(PARI) is(n, b=6)=!for(i=1, #d=Set(digits(n, b)), (!d[i]||n%prime(d[i]))&&return)
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Apr 11 2015
EXTENSIONS
More terms from Robert Israel, Apr 04 2024
STATUS
approved