The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256867 Numbers divisible by prime(d+1) for each digit d of their base-7 representation. 2
 0, 15, 57, 100, 168, 182, 396, 450, 624, 700, 750, 800, 840, 1050, 1176, 1190, 1274, 1485, 1540, 1716, 2520, 2652, 2760, 2772, 2814, 2850, 2898, 2970, 3150, 3486, 3570, 3861, 4173, 4368, 4488, 4860, 4900, 4940, 4970, 5160, 5250, 5490, 5595, 5600, 5880, 5950, 6435, 6630, 7224, 7350, 7560, 7602, 7910, 8050, 8232, 8330 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The base-7 variant of A256882 - A256884, A256865 - A256870 in bases 2, ..., 10. A variant of A256877 where digits 0 are forbidden and divisibility by prime(d) is required. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 MATHEMATICA Select[Range[0, 9000], AllTrue[#/Prime[IntegerDigits[#, 7]+1], IntegerQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 17 2020 *) PROG is(n, b=7)=!for(i=1, #d=Set(digits(n, b)), n%prime(d[i]+1)&&return) CROSSREFS Cf. A256882, A256883, A256884, A256865 - A256870, A256874 - A256879, A256786. Sequence in context: A043944 A140379 A020222 * A336251 A158482 A184223 Adjacent sequences:  A256864 A256865 A256866 * A256868 A256869 A256870 KEYWORD nonn,base AUTHOR M. F. Hasler, Apr 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 05:12 EST 2021. Contains 349419 sequences. (Running on oeis4.)