This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256789 R(k), the minimal alternating squares representation of k, concatenated for k = 0, 1, 2,.... 13
 0, 1, 4, -2, 4, -1, 4, 9, -4, 9, -4, 1, 9, -4, 2, 9, -1, 9, 16, -9, 4, -1, 16, -9, 4, 16, -4, 16, -4, 1, 16, -4, 2, 16, -1, 16, 25, -9, 1, 25, -9, 4, -2, 25, -9, 4, -1, 25, -9, 4, 25, -4, 25, -4, 1, 25, -4, 2, 25, -1, 25, 36, -16, 9, -4, 1, 36, -9, 36, -9, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let B(n) be the least square >= n.  The minimal alternating squares representation of a nonnegative integer n is defined as the sum B(n) - B(m(1) + B(m(2) + ... + d*B(m(k)) that results from the recurrence R(n) = B(n) - R(B(n) - n), with initial representations R(0) = 0, R(1) = 1, and R(2) = 4 - 2.  The sum B(n) + B(m(2)) + ... is the positive part of R(n), and the sum B(m(1)) + B(m(3)) + ...  is the nonpositive part of R(n).  The last term of R(k) is the trace of n.  If b(n) = n(n+1)/2, the n-th triangular number, then the sum R(n) is the minimal alternating triangular-number representation of n. Unlike minimal alternating representations for other bases (e.g., Fibonacci numbers, A256655; binary, A256696, triangular numbers, A244974), the trace of a minimal alternating squares representation is not necessarily a member of the base; specifically, the trace can be -2 or 2, which are not squares. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 EXAMPLE R(0) = 0 R(1) = 1 R(2) = 4 - 2 R(3) = 4 - 1 R(4) = 4 R(5) = 9 - 4 R(6) = 9 - 4 + 1 R(7) = 9 - 4 + 2 R(89) = 100 - 16 + 9 - 4 MATHEMATICA b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}]; s[n_] := Table[b[n], {k, 1, 2 n - 1}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; Table[r[n], {n, 0, 120}]  (* A256789, individual representations *) Flatten[Table[r[n], {n, 0, 120}]] (* A256789, concatenated representations *) CROSSREFS Cf. A000290, A256655, A256696, A244974, A256780 (number of terms), A256791 (trace). Sequence in context: A156199 A135513 A176895 * A226577 A179950 A016514 Adjacent sequences:  A256786 A256787 A256788 * A256790 A256791 A256792 KEYWORD easy,sign AUTHOR Clark Kimberling, Apr 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 22:58 EST 2018. Contains 317279 sequences. (Running on oeis4.)