login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum zero and no antidiagonal sum three
9

%I #4 Apr 09 2015 12:35:12

%S 384,2304,2304,13056,21904,13056,73984,186624,186624,73984,413440,

%T 1648656,2267136,1648656,413440,2310400,14137600,30294016,30294016,

%U 14137600,2310400,12865280,122323600,388595712,635846656,388595712

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum zero and no antidiagonal sum three

%C Table starts

%C ........384.........2304...........13056.............73984..............413440

%C .......2304........21904..........186624...........1648656............14137600

%C ......13056.......186624.........2267136..........30294016...........388595712

%C ......73984......1648656........30294016.........635846656.........12465275904

%C .....413440.....14137600.......388595712.......12465275904........369798053888

%C ....2310400....122323600......5101387776......249872016384......11265313555456

%C ...12865280...1047687424.....65927512064.....4910514177024.....337855448236032

%C ...71639296...9002973456....859759181824....97652975330304...10232633445990400

%C ..398552832..77177284864..11156772618240..1928407075431424..307652425443164160

%C .2217279744.662446232464.145188233150464.38241122864997376.9286825801707749376

%H R. H. Hardin, <a href="/A256735/b256735.txt">Table of n, a(n) for n = 1..337</a>

%F Empirical for column k:

%F k=1: a(n) = 7*a(n-1) -56*a(n-3) +64*a(n-4)

%F k=2: [order 15]

%F k=3: [order 16]

%F k=4: [order 78] for n>80

%e Some solutions for n=2 k=4

%e ..0..0..0..0..1..1....0..0..0..1..0..0....0..0..0..1..0..0....0..0..0..0..0..1

%e ..1..0..1..0..0..1....1..0..1..0..0..1....1..1..0..1..0..0....0..0..1..0..1..1

%e ..0..0..1..0..1..1....1..0..1..1..1..0....1..0..0..1..0..1....0..1..1..0..1..1

%e ..0..0..1..0..1..1....0..0..1..0..1..0....0..0..0..0..0..1....0..1..0..0..0..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Apr 09 2015