login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256735
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum zero and no antidiagonal sum three
9
384, 2304, 2304, 13056, 21904, 13056, 73984, 186624, 186624, 73984, 413440, 1648656, 2267136, 1648656, 413440, 2310400, 14137600, 30294016, 30294016, 14137600, 2310400, 12865280, 122323600, 388595712, 635846656, 388595712
OFFSET
1,1
COMMENTS
Table starts
........384.........2304...........13056.............73984..............413440
.......2304........21904..........186624...........1648656............14137600
......13056.......186624.........2267136..........30294016...........388595712
......73984......1648656........30294016.........635846656.........12465275904
.....413440.....14137600.......388595712.......12465275904........369798053888
....2310400....122323600......5101387776......249872016384......11265313555456
...12865280...1047687424.....65927512064.....4910514177024.....337855448236032
...71639296...9002973456....859759181824....97652975330304...10232633445990400
..398552832..77177284864..11156772618240..1928407075431424..307652425443164160
.2217279744.662446232464.145188233150464.38241122864997376.9286825801707749376
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1) -56*a(n-3) +64*a(n-4)
k=2: [order 15]
k=3: [order 16]
k=4: [order 78] for n>80
EXAMPLE
Some solutions for n=2 k=4
..0..0..0..0..1..1....0..0..0..1..0..0....0..0..0..1..0..0....0..0..0..0..0..1
..1..0..1..0..0..1....1..0..1..0..0..1....1..1..0..1..0..0....0..0..1..0..1..1
..0..0..1..0..1..1....1..0..1..1..1..0....1..0..0..1..0..1....0..1..1..0..1..1
..0..0..1..0..1..1....0..0..1..0..1..0....0..0..0..0..0..1....0..1..0..0..0..0
CROSSREFS
Sequence in context: A212430 A134175 A233886 * A256728 A236029 A252904
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 09 2015
STATUS
approved