login
A256560
Triangle read by rows, sums of 2 distinct nonzero squares plus sums of 2 distinct nonzero cubes: T(n,k) = n^2 + k^2 + n^3 + k^3, 1 <= k <= n-1.
0
14, 38, 48, 82, 92, 116, 152, 162, 186, 230, 254, 264, 288, 332, 402, 394, 404, 428, 472, 542, 644, 578, 588, 612, 656, 726, 828, 968, 812, 822, 846, 890, 960, 1062, 1202, 1386, 1102, 1112, 1136, 1180, 1250, 1352, 1492, 1676, 1910
OFFSET
2,1
COMMENTS
All terms are even.
T(n,1) = A011379(n) + 2.
When n=k+1, T(n,k+1) = A011379(n-1) + A011379(n) = 2n^3 - n^2 + n.
FORMULA
a(n) = A055096(n) + A256497(n-1).
T(n,k) = T055096(n,k) + T256547(n-1,k).
T(n,k) = T(n-1,k) + A049450(n).
T(n,k) = T(n,k-1) + A049450(k).
T(n,k) = A011379(n) + A011379(k).
EXAMPLE
Triangle starts T(2,1):
n\k 1 2 3 4 5 6 7 8 9 10
2: 14
3: 38 48
4: 82 92 116
5: 152 162 186 230
6: 254 264 288 332 402
7: 394 404 428 472 542 644
8: 578 588 612 656 726 828 968
9: 812 822 846 890 960 1062 1202 1386
10: 1102 1112 1136 1180 1250 1352 1492 1676 1910
11: 1454 1464 1488 1532 1602 1704 1844 2028 2262 2552
...
The successive terms are: (2^2 + 1^2 + 2^3 + 1^3), (3^2 + 1^2 + 3^3 + 1^3), (3^2 + 2^2 + 3^3 + 2^3), (4^2 + 1^2 + 4^3 + 1^3), (4^2 + 2^2 + 4^3 + 2^3), (4^2 + 3^2 + 4^3 + 3^3), ...
T(7,4) = 472 because 7^2 + 7^3 + 4^2 + 4^3 = 472.
CROSSREFS
Cf. A055096 (sums of 2 distinct nonzero squares), A256497 (sums of 2 distinct nonzero cubes), A011379, A024670, A004431, A049450.
Sequence in context: A034181 A216766 A057439 * A058826 A142241 A186121
KEYWORD
nonn,tabl
AUTHOR
Bob Selcoe, Apr 02 2015
STATUS
approved