

A256519


Composites c for which an integer 1 < k < c exists such that (ck)! == 1 (mod c).


2



25, 121, 169, 437, 551, 667, 721, 1037, 1159, 1273, 1349, 1403, 1541, 1769, 1943, 2209, 2329, 2363, 2419, 3071, 3713, 4087, 5041, 5111, 7313, 8357, 8479, 9017, 11357, 11983, 12673, 16117, 16343, 19043, 19099, 19879
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The 1 < k part of the condition in the definition is implied by Wilson's theorem.


LINKS



EXAMPLE

c = 25 satisfies the congruence with k = 21, since ((2521)!+1) mod 25 = 0, so 25 is a term of the sequence.


PROG

(PARI) forcomposite(c=1, , for(k=1, c1, if(Mod((ck)!, c)==1, print1(c, ", "); break({1}))))
(PARI) is(n)=if(isprime(n), return(0)); my(m=Mod(6, n)); for(k=4, n, m*=k; if(m==1, return(1)); if(gcd(m, n)!=1, return(0))) \\ Charles R Greathouse IV, Apr 02 2015


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



