login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromes i such that 2*i^2 is a palindrome.
1

%I #40 Jul 26 2020 19:25:33

%S 0,1,2,11,101,111,1001,1111,10001,10101,11011,100001,101101,110011,

%T 1000001,1001001,1010101,1100011,10000001,10011001,10100101,11000011,

%U 100000001,100010001,100101001,101000101,110000011,1000000001,1000110001,1001001001,1010000101

%N Palindromes i such that 2*i^2 is a palindrome.

%C Subsequence of palindromes of A256437.

%C The sequence contains all positive integers of the form: m*10^(i + NumberOfDigit(m)) + m where i is any nonnegative integer and m is any term of A000533.

%C Also contains 1 + 10^i and 1 + 10^i + 10^(2*i) for all i >= 1. Are there any members with more than four 1's, or any members other than 2 with digits other than 0's and 1's? - _Robert Israel_, Apr 13 2015

%H Lars Blomberg, <a href="/A256495/b256495.txt">Table of n, a(n) for n = 1..91</a>

%e Palindrome 11 is in the sequence because 2*11^2 = 242, a palindrome.

%p dmax:= 11: # to get all terms with at most dmax digits

%p revdigs:= proc(n)

%p local L,i;

%p L:= convert(n,base,10);

%p add(10^(i-1)*L[-i],i=1..nops(L));

%p end proc:

%p filter:= proc(n) local L;

%p L:= convert(2*n^2,base,10);

%p L = ListTools:-Reverse(L)

%p end proc:

%p A:= {}:

%p for d from 1 to dmax do

%p if d::even then

%p A:= A union select(filter, {seq(10^(d/2)*x + revdigs(x), x=10^(d/2-1)..10^(d/2)-1)})

%p else

%p m:= (d-1)/2;

%p A:= A union select(filter, {seq(seq(10^(m+1)*x + y*10^m + revdigs(x), y=0..9),x=10^(m-1)..10^m-1)})

%p fi

%p od:

%p A; # if using Maple 11 or earlier, uncomment the next line

%p # sort(convert(A,list)); # _Robert Israel_, Apr 13 2015

%t palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[

%t Range@ 10000000, palQ@ # && palQ[#^2 + FromDigits[Reverse@ IntegerDigits@ #]^2] &] (* _Michael De Vlieger_, Mar 31 2015 *)

%t Select[Range[0,10101*10^5],AllTrue[{#,2#^2},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 26 2020 *)

%o (PARI) ispal(n) = my(d = digits(n)); Vecrev(d) == d;

%o lista(nn) = {for (n=0, nn, if (ispal(n) && ispal(2*n^2), print1(n, ", ")););} \\ _Michel Marcus_, Mar 31 2015

%Y Cf. A256437.

%K nonn,base

%O 1,3

%A _Bui Quang Tuan_, Mar 31 2015

%E a(19)-a(22) from _Michel Marcus_, Mar 31 2015

%E a(23)-a(31) from _Lars Blomberg_, Apr 13 2015