login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256495
Palindromes i such that 2*i^2 is a palindrome.
1
0, 1, 2, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 100001, 101101, 110011, 1000001, 1001001, 1010101, 1100011, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 1000000001, 1000110001, 1001001001, 1010000101
OFFSET
1,3
COMMENTS
Subsequence of palindromes of A256437.
The sequence contains all positive integers of the form: m*10^(i + NumberOfDigit(m)) + m where i is any nonnegative integer and m is any term of A000533.
Also contains 1 + 10^i and 1 + 10^i + 10^(2*i) for all i >= 1. Are there any members with more than four 1's, or any members other than 2 with digits other than 0's and 1's? - Robert Israel, Apr 13 2015
LINKS
EXAMPLE
Palindrome 11 is in the sequence because 2*11^2 = 242, a palindrome.
MAPLE
dmax:= 11: # to get all terms with at most dmax digits
revdigs:= proc(n)
local L, i;
L:= convert(n, base, 10);
add(10^(i-1)*L[-i], i=1..nops(L));
end proc:
filter:= proc(n) local L;
L:= convert(2*n^2, base, 10);
L = ListTools:-Reverse(L)
end proc:
A:= {}:
for d from 1 to dmax do
if d::even then
A:= A union select(filter, {seq(10^(d/2)*x + revdigs(x), x=10^(d/2-1)..10^(d/2)-1)})
else
m:= (d-1)/2;
A:= A union select(filter, {seq(seq(10^(m+1)*x + y*10^m + revdigs(x), y=0..9), x=10^(m-1)..10^m-1)})
fi
od:
A; # if using Maple 11 or earlier, uncomment the next line
# sort(convert(A, list)); # Robert Israel, Apr 13 2015
MATHEMATICA
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[
Range@ 10000000, palQ@ # && palQ[#^2 + FromDigits[Reverse@ IntegerDigits@ #]^2] &] (* Michael De Vlieger, Mar 31 2015 *)
Select[Range[0, 10101*10^5], AllTrue[{#, 2#^2}, PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 26 2020 *)
PROG
(PARI) ispal(n) = my(d = digits(n)); Vecrev(d) == d;
lista(nn) = {for (n=0, nn, if (ispal(n) && ispal(2*n^2), print1(n, ", ")); ); } \\ Michel Marcus, Mar 31 2015
CROSSREFS
Cf. A256437.
Sequence in context: A263607 A083394 A263611 * A087988 A072382 A038136
KEYWORD
nonn,base
AUTHOR
Bui Quang Tuan, Mar 31 2015
EXTENSIONS
a(19)-a(22) from Michel Marcus, Mar 31 2015
a(23)-a(31) from Lars Blomberg, Apr 13 2015
STATUS
approved