login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256101 The broken eggs problem. 2
301, 721, 1141, 1561, 1981, 2401, 2821, 3241, 3661, 4081, 4501, 4921, 5341, 5761, 6181, 6601, 7021, 7441, 7861, 8281, 8701, 9121, 9541, 9961, 10381, 10801, 11221, 11641, 12061, 12481, 12901, 13321, 13741, 14161, 14581, 15001, 15421, 15841 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This is a problem of byzantine mathematics appearing in the Codex Vinobonensis Phil. Gr. 65. See the Hunger-Vogel reference, p. 73, problem 86.
It also appears in the Tropfke reference on p. 640, 4.3.5.2, Die Eierfrau, as a special case of the Chinese Ta-yen rule (method of the great extension) treated on p. 636.
This is also a problem posed in the Alten et al. reference, p. 203, Aufgabe 3.1.6 (taken from Tropfke).
For the statement of the problem (in another setting) see the Cherowitzo link, where it is considered as an application of the Chinese remainder theorem.
The problem is to find all solutions of the common congruences: N congruent to 1 modulo 2, 3, 4, 5 and 6, and 0 modulo 7. For the application of the Chinese remainder theorem one first disposes of the moduli 2 and 6 (these congruences follow from the others).
The egg-selling woman had 301 eggs before they were broken according to problem 86 with this special solution in the Hunger-Vogel reference.
REFERENCES
H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 203.
H. Hunger and K. Vogel, Ein byzantinisches Rechenbuch des 15.Jahrhunderts. 100 Aufgaben aus dem Codex Vindobonensis Phil. Gr. 65. (in Greek and German translation), Hermann Böhlaus Nachf., Wien, 1963 (Österr. Akad. d. Wiss., phil.-hist. Kl., Denkschriften, 78. Band, 2. Abhandlung), p. 73.
J. Tropfke, Geschichte der Elementarmathematik, Band 1, Arithmetik und Algebra, 4. Auflage, Walter de Gruyter, Berlin, New York , 1980, p. 640.
LINKS
Bill Cherowitzo, Chinese remainder Theorem.
FORMULA
a(n) = 420*n-119, n >= 1, (note that 420 = 3*4*5*7, with pairwise coprime factors needed for the Chinese remainder theorem).
a(n) = 60*A017041(n-1) + 1, n >= 1.
G.f.: x*7*(43+17*x)/(1-x)^2. (Corrected by Vincenzo Librandi, Apr 11 2015
MAPLE
A256101:=n->420*n-119: seq(A256101(n), n=1..50); # Wesley Ivan Hurt, Apr 11 2015
MATHEMATICA
CoefficientList[Series[(301 + 119 x) / (1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2015 *)
PROG
(Magma) [420*n-119: n in [1..40]]; // Vincenzo Librandi, Apr 11 2015
(Python)
terms=[]
n=50 #terms here
for i in range(1, n+1):
ans=420*i-119
terms.append(ans)
print(terms)
# Adam Hugill, Feb 22 2022
CROSSREFS
Cf. A017041.
Sequence in context: A297913 A298506 A282769 * A070192 A298326 A299219
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 10 2015
EXTENSIONS
Corrected G.f. rewritten. - Wolfdieter Lang, Apr 15 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 23:23 EDT 2024. Contains 371767 sequences. (Running on oeis4.)