The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256101 The broken eggs problem. 2
 301, 721, 1141, 1561, 1981, 2401, 2821, 3241, 3661, 4081, 4501, 4921, 5341, 5761, 6181, 6601, 7021, 7441, 7861, 8281, 8701, 9121, 9541, 9961, 10381, 10801, 11221, 11641, 12061, 12481, 12901, 13321, 13741, 14161, 14581, 15001, 15421, 15841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is a problem of byzantine mathematics appearing in the Codex Vinobonensis Phil. Gr. 65. See the Hunger-Vogel reference, p. 73, problem 86. It also appears in the Tropfke reference on p. 640, 4.3.5.2, Die Eierfrau, as a special case of the Chinese Ta-yen rule (method of the great extension) treated on p. 636. This is also a problem posed in the Alten et al. reference, p. 203, Aufgabe 3.1.6 (taken from Tropfke). For the statement of the problem (in another setting) see the Cherowitzo link, where it is considered as an application of the Chinese remainder theorem. The problem is to find all solutions of the common congruences: N congruent to 1 modulo 2, 3, 4, 5 and 6, and 0 modulo 7. For the application of the Chinese remainder theorem one first disposes of the moduli 2 and 6 (these congruences follow from the others). The egg-selling woman had 301 eggs before they were broken according to problem 86 with this special solution in the Hunger-Vogel reference. REFERENCES H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 203. H. Hunger and K. Vogel, Ein byzantinisches Rechenbuch des 15.Jahrhunderts. 100 Aufgaben aus dem Codex Vindobonensis Phil. Gr. 65. (in Greek and German translation), Hermann Böhlaus Nachf., Wien, 1963 (Österr. Akad. d. Wiss., phil.-hist. Kl., Denkschriften, 78. Band, 2. Abhandlung), p. 73. J. Tropfke, Geschichte der Elementarmathematik, Band 1, Arithmetik und Algebra, 4. Auflage, Walter de Gruyter, Berlin, New York , 1980, p. 640. LINKS Adam Hugill, Table of n, a(n) for n = 1..10000 Bill Cherowitzo, Chinese remainder Theorem. Index entries for linear recurrences with constant coefficients, signature (2, -1). FORMULA a(n) = 420*n-119, n >= 1, (note that 420 = 3*4*5*7, with pairwise coprime factors needed for the Chinese remainder theorem). a(n) = 60*A017041(n-1) + 1, n >= 1. G.f.: x*7*(43+17*x)/(1-x)^2. (Corrected by Vincenzo Librandi, Apr 11 2015 MAPLE A256101:=n->420*n-119: seq(A256101(n), n=1..50); # Wesley Ivan Hurt, Apr 11 2015 MATHEMATICA CoefficientList[Series[(301 + 119 x) / (1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2015 *) PROG (Magma) [420*n-119: n in [1..40]]; // Vincenzo Librandi, Apr 11 2015 (Python) terms=[] n=50 #terms here for i in range(1, n+1): ans=420*i-119 terms.append(ans) print(terms) # Adam Hugill, Feb 22 2022 CROSSREFS Cf. A017041. Sequence in context: A297913 A298506 A282769 * A070192 A298326 A299219 Adjacent sequences: A256098 A256099 A256100 * A256102 A256103 A256104 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Apr 10 2015 EXTENSIONS Corrected G.f. rewritten. - Wolfdieter Lang, Apr 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 09:04 EDT 2024. Contains 371799 sequences. (Running on oeis4.)