

A256083


Nonpalindromic balanced numbers in base 3.


2



87, 96, 105, 137, 146, 155, 169, 178, 187, 264, 276, 312, 348, 380, 416, 452, 464, 508, 520, 556, 592, 741, 768, 795, 816, 831, 843, 858, 870, 885, 895, 906, 922, 933, 949, 960, 987, 991, 1014, 1018, 1041, 1045, 1055, 1077, 1082, 1104, 1109, 1131, 1141, 1145, 1168, 1172, 1195, 1199, 1226, 1237, 1253, 1264, 1280, 1291, 1301
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the base3 variant of the decimal version A256075 invented by Eric Angelini.
All balanced numbers with less than 4 digits are palindromic, and since there is no digit 3 in base 3, there cannot be a term in this sequence with 4 base3 digits, where weights are (3/2, 1/2, 1/2, 3/2).


LINKS

Table of n, a(n) for n=1..61.


EXAMPLE

a(4) = 137 = 12002[3] is balanced because 1*2 + 2*1 = 0*1 + 2*2.


PROG

(PARI) is(n, b=3, d=digits(n, b), o=(#d+1)/2)=!(vector(#d, i, io)*d~)&&d!=Vecrev(d)


CROSSREFS

Cf. A256082  A256089, A256075, A256080.
Sequence in context: A095583 A323414 A231403 * A038005 A305266 A046003
Adjacent sequences: A256080 A256081 A256082 * A256084 A256085 A256086


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, Mar 14 2015


STATUS

approved



