The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256060 Queen Dido's puzzle (the founding of Carthage): a(n) is twice the maximal area of a polygon with 1) vertices on integral Cartesian coordinates, 2) no two edges parallel, and 3) all edge lengths less than or equal to n^2. 0

%I

%S 0,0,1,1,2,36,36,36,50,53,153,153,153,333,333,333,360

%N Queen Dido's puzzle (the founding of Carthage): a(n) is twice the maximal area of a polygon with 1) vertices on integral Cartesian coordinates, 2) no two edges parallel, and 3) all edge lengths less than or equal to n^2.

%C The sequence may increase when n is the sum of two squares (A001481).

%C An optimal polygon will always be convex. - _Gordon Hamilton_

%C For parity reasons, the edges of the maximal-area polygon are not always as long as possible. This is true for a(9) through a(12). - _Gordon Hamilton_

%C This puzzle sequence could be used when introducing students to slopes.

%C Are these values known to be optimal or are they conjectures? - _N. J. A. Sloane_, Mar 13 2015

%C These values have not been proved to be optimal.

%e a(4) = 2 because this triangle has area 1 (remember a(n) is twice the area):

%e . . . . .

%e . x . x .

%e . . x . .

%e . . . . .

%e a(5) = a(6) = a(7) = 36 because of this polygon of area 18:

%e . . . . . . . .

%e . . x . x . . .

%e . . . . . x . .

%e . x . . . . . .

%e . . . . . . x .

%e . x . . . x . .

%e . . . x . . . .

%e . . . . . . . .

%e a(8) = 50 because of this polygon of area 25:

%e . . . . . . . . .

%e . . . . . . . . .

%e . . . x . x . . .

%e . x . . . . . . .

%e . . . . . . . x .

%e . x . . . . . . .

%e . . . . . . x . .

%e . . x . . . . . .

%e . . . . x . . . .

%e . . . . . . . . .

%e a(9) = 53 because of this polygon of area 26.5:

%e . . . . . . . . .

%e . . . x . . . . .

%e . x . . . x . . .

%e . . . . . . . . .

%e . . . . . . . x .

%e . x . . . . . . .

%e . . . . . . x . .

%e . . x . . x . . .

%e . . . . . . . . .

%e a(10) = 153 because of this polygon of area 76.5:

%e . . . . . . . . . . . . .

%e . . . x . . x . . . . . .

%e . . x . . . . . x . . . .

%e . . . . . . . . . . . . .

%e . x . . . . . . . . x . .

%e . . . . . . . . . . . . .

%e . . . . . . . . . . . x .

%e . x . . . . . . . . . . .

%e . . . . . . . . . . . . .

%e . . . . . . . . . . x . .

%e . . x . . . . . x . . . .

%e . . . . . x . . . . . . .

%e . . . . . . . . . . . . .

%K nonn,more

%O 0,5

%A _Gordon Hamilton_, Mar 13 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 21:08 EST 2022. Contains 350565 sequences. (Running on oeis4.)