login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256060 Queen Dido's puzzle (the founding of Carthage): a(n) is twice the maximal area of a polygon with 1) vertices on integral Cartesian coordinates, 2) no two edges parallel, and 3) all edge lengths less than or equal to n^2. 0
0, 0, 1, 1, 2, 36, 36, 36, 50, 53, 153, 153, 153, 333, 333, 333, 360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The sequence may increase when n is the sum of two squares (A001481).

An optimal polygon will always be convex. - Gordon Hamilton

For parity reasons, the edges of the maximal-area polygon are not always as long as possible. This is true for a(9) through a(12). - Gordon Hamilton

This puzzle sequence could be used when introducing students to slopes.

Are these values known to be optimal or are they conjectures? - N. J. A. Sloane, Mar 13 2015

These values have not been proved to be optimal.

LINKS

Table of n, a(n) for n=0..16.

EXAMPLE

a(4) = 2 because this triangle has area 1 (remember a(n) is twice the area):

                          . . . . .

                          . x . x .

                          . . x . .

                          . . . . .

a(5) = a(6) = a(7) = 36 because of this polygon of area 18:

                      . . . . . . . .

                      . . x . x . . .

                      . . . . . x . .

                      . x . . . . . .

                      . . . . . . x .

                      . x . . . x . .

                      . . . x . . . .

                      . . . . . . . .

a(8) = 50 because of this polygon of area 25:

                     . . . . . . . . .

                     . . . . . . . . .

                     . . . x . x . . .

                     . x . . . . . . .

                     . . . . . . . x .

                     . x . . . . . . .

                     . . . . . . x . .

                     . . x . . . . . .

                     . . . . x . . . .

                     . . . . . . . . .

a(9) = 53 because of this polygon of area 26.5:

                     . . . . . . . . .

                     . . . x . . . . .

                     . x . . . x . . .

                     . . . . . . . . .

                     . . . . . . . x .

                     . x . . . . . . .

                     . . . . . . x . .

                     . . x . . x . . .

                     . . . . . . . . .

a(10) = 153 because of this polygon of area 76.5:

                  . . . . . . . . . . . . .

                  . . . x . . x . . . . . .

                  . . x . . . . . x . . . .

                  . . . . . . . . . . . . .

                  . x . . . . . . . . x . .

                  . . . . . . . . . . . . .

                  . . . . . . . . . . . x .

                  . x . . . . . . . . . . .

                  . . . . . . . . . . . . .

                  . . . . . . . . . . x . .

                  . . x . . . . . x . . . .

                  . . . . . x . . . . . . .

                  . . . . . . . . . . . . .

CROSSREFS

Sequence in context: A094725 A095397 A073406 * A096513 A037418 A239343

Adjacent sequences:  A256057 A256058 A256059 * A256061 A256062 A256063

KEYWORD

nonn,more

AUTHOR

Gordon Hamilton, Mar 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 17:12 EST 2021. Contains 349424 sequences. (Running on oeis4.)