|
|
A255920
|
|
Number of primes p with p < n such that n^(p-1) == 1 (mod p^2) i.e., number of Wieferich primes to base n less than n.
|
|
14
|
|
|
0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 2, 3, 0, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 0, 3, 1, 1, 0, 2, 0, 0, 1, 1, 2, 2, 1, 2, 0, 2, 3, 2, 1, 2, 0, 2, 1, 2, 2, 1, 1, 1, 3, 2, 2, 0, 0, 1, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,16
|
|
LINKS
|
|
|
MATHEMATICA
|
f[n_] := Block[{p = Complement[Prime@ Range@ PrimePi@ n, First /@ FactorInteger@ n]}, Select[p, Divisible[n^(# - 1) - 1, #^2] &]]; Length /@ Table[f@ n, {n, 2, 120}] (* Michael De Vlieger, Sep 24 2015 *)
|
|
PROG
|
(PARI) for(n=2, 120, i=0; forprime(p=1, n, if(Mod(n, p^2)^(p-1)==1, i++)); print1(i, ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|