login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255801 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3 9
70, 134, 134, 210, 166, 210, 409, 178, 178, 409, 733, 262, 158, 262, 733, 1318, 340, 198, 198, 340, 1318, 2380, 472, 256, 200, 256, 472, 2380, 4187, 600, 258, 268, 268, 258, 600, 4187, 7603, 856, 329, 263, 286, 263, 329, 856, 7603, 13623, 1172, 344, 384, 290, 290 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

....70..134.210.409.733.1318.2380.4187.7603.13623.24696.44353.79816.143973

...134..166.178.262.340..472..600..856.1172..1713..2474..3613..5136...7550

...210..178.158.198.256..258..329..344..392...456...597...638...805....892

...409..262.198.200.268..263..384..336..326...344...476...471...708....608

...733..340.256.268.286..290..472..630..674...748...814...866..1540...2190

..1318..472.258.263.290..214..270..358..322...419...486...334...434....622

..2380..600.329.384.472..270..344..452..447...692...832...478...624....828

..4187..856.344.336.630..358..452..766..570...780..1542..1030..1316...2590

..7603.1172.392.326.674..322..447..570..342...466..1026...506...707...1014

.13623.1713.456.344.748..419..692..780..466...616..1388...771..1304...1436

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..2311

FORMULA

Empirical for column k:

k=1: [linear recurrence of order 14] for n>21

k=2: [order 18] for n>22

k=3: a(n) = 5*a(n-6) -8*a(n-12) +4*a(n-18) for n>20

k=4: a(n) = 3*a(n-6) -2*a(n-12) for n>15

k=5: a(n) = 5*a(n-6) -4*a(n-12) for n>15

k=6: a(n) = 3*a(n-6) -2*a(n-12) for n>15

k=7: a(n) = 3*a(n-6) -2*a(n-12) for n>15

k=8: a(n) = 5*a(n-6) -4*a(n-12) for n>15

k=9: a(n) = 3*a(n-6) -2*a(n-12) for n>15

k=10: a(n) = 3*a(n-6) -2*a(n-12) for n>15

k=11: a(n) = 5*a(n-6) -4*a(n-12) for n>15

k=12: a(n) = 3*a(n-6) -2*a(n-12) for n>15

EXAMPLE

Some solutions for n=4 k=4

..0..0..1..1..1..1....1..0..1..0..1..0....0..1..0..1..0..1....0..1..0..1..1..1

..0..1..0..1..0..0....0..1..0..1..1..0....1..1..0..0..1..0....1..0..1..0..1..0

..1..0..1..0..0..1....1..0..1..0..0..1....0..0..1..1..0..1....0..1..0..1..0..1

..0..1..0..1..0..1....0..1..0..1..0..1....0..0..1..0..1..0....1..0..1..0..1..0

..1..1..0..0..1..0....1..1..0..0..1..0....0..1..0..1..1..0....0..1..0..1..0..0

..0..0..1..1..0..0....0..0..1..1..0..0....1..1..1..0..0..1....1..0..1..0..1..0

CROSSREFS

Sequence in context: A113928 A160354 A215111 * A044193 A044574 A255794

Adjacent sequences:  A255798 A255799 A255800 * A255802 A255803 A255804

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Mar 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 04:41 EDT 2022. Contains 356016 sequences. (Running on oeis4.)