%I #5 Mar 06 2015 13:41:48
%S 70,134,134,210,166,210,409,178,178,409,733,262,158,262,733,1318,340,
%T 198,198,340,1318,2380,472,256,200,256,472,2380,4187,600,258,268,268,
%U 258,600,4187,7603,856,329,263,286,263,329,856,7603,13623,1172,344,384,290,290
%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3
%C Table starts
%C ....70..134.210.409.733.1318.2380.4187.7603.13623.24696.44353.79816.143973
%C ...134..166.178.262.340..472..600..856.1172..1713..2474..3613..5136...7550
%C ...210..178.158.198.256..258..329..344..392...456...597...638...805....892
%C ...409..262.198.200.268..263..384..336..326...344...476...471...708....608
%C ...733..340.256.268.286..290..472..630..674...748...814...866..1540...2190
%C ..1318..472.258.263.290..214..270..358..322...419...486...334...434....622
%C ..2380..600.329.384.472..270..344..452..447...692...832...478...624....828
%C ..4187..856.344.336.630..358..452..766..570...780..1542..1030..1316...2590
%C ..7603.1172.392.326.674..322..447..570..342...466..1026...506...707...1014
%C .13623.1713.456.344.748..419..692..780..466...616..1388...771..1304...1436
%H R. H. Hardin, <a href="/A255801/b255801.txt">Table of n, a(n) for n = 1..2311</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 14] for n>21
%F k=2: [order 18] for n>22
%F k=3: a(n) = 5*a(n-6) -8*a(n-12) +4*a(n-18) for n>20
%F k=4: a(n) = 3*a(n-6) -2*a(n-12) for n>15
%F k=5: a(n) = 5*a(n-6) -4*a(n-12) for n>15
%F k=6: a(n) = 3*a(n-6) -2*a(n-12) for n>15
%F k=7: a(n) = 3*a(n-6) -2*a(n-12) for n>15
%F k=8: a(n) = 5*a(n-6) -4*a(n-12) for n>15
%F k=9: a(n) = 3*a(n-6) -2*a(n-12) for n>15
%F k=10: a(n) = 3*a(n-6) -2*a(n-12) for n>15
%F k=11: a(n) = 5*a(n-6) -4*a(n-12) for n>15
%F k=12: a(n) = 3*a(n-6) -2*a(n-12) for n>15
%e Some solutions for n=4 k=4
%e ..0..0..1..1..1..1....1..0..1..0..1..0....0..1..0..1..0..1....0..1..0..1..1..1
%e ..0..1..0..1..0..0....0..1..0..1..1..0....1..1..0..0..1..0....1..0..1..0..1..0
%e ..1..0..1..0..0..1....1..0..1..0..0..1....0..0..1..1..0..1....0..1..0..1..0..1
%e ..0..1..0..1..0..1....0..1..0..1..0..1....0..0..1..0..1..0....1..0..1..0..1..0
%e ..1..1..0..0..1..0....1..1..0..0..1..0....0..1..0..1..1..0....0..1..0..1..0..0
%e ..0..0..1..1..0..0....0..0..1..1..0..0....1..1..1..0..0..1....1..0..1..0..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 06 2015
|