login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255697
Decimal expansion of the Plouffe sum S(1,4) = Sum_{n >= 1} 1/(n*(exp(4*Pi*n)-1)).
8
3, 4, 8, 7, 3, 6, 0, 5, 9, 8, 6, 0, 0, 6, 0, 8, 5, 4, 7, 0, 0, 9, 7, 5, 3, 4, 8, 5, 7, 0, 4, 8, 8, 1, 0, 4, 4, 6, 6, 2, 7, 5, 6, 4, 5, 6, 4, 6, 5, 7, 2, 2, 0, 0, 7, 8, 6, 2, 0, 7, 2, 2, 5, 5, 5, 6, 0, 5, 6, 5, 2, 1, 6, 1, 2, 4, 4, 7, 5, 0, 3, 3, 2, 4, 0, 0, 1, 8, 7, 2, 6, 2, 6, 5, 2, 9, 6, 2, 7, 9, 2, 8, 7, 4
OFFSET
-5,1
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 6.
Linas Vepštas, On Plouffe's Ramanujan identities, The Ramanujan Journal, Vol. 27 (2012), pp. 387-408; alternative link; arXiv preprint, arXiv:math/0609775 [math.NT], 2006-2010.
FORMULA
This is the case k=1, m=4 of S(k,m) = Sum_{n >= 1} 1/(n^k*(exp(m*Pi*n)-1)).
Pi = 72*S(1,1) - 96*S(1,2) + 24*S(1,4).
Equals Sum_{k>=1} sigma(k)/(k*exp(4*Pi*k)). - Amiram Eldar, Jun 05 2023
EXAMPLE
0.000003487360598600608547009753485704881044662756456465722...
MATHEMATICA
digits = 104; S[1, 4] = NSum[1/(n*(Exp[4*Pi*n] - 1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> digits]; RealDigits[S[1, 4], 10, digits] // First
CROSSREFS
Cf. A255695 (S(1,1)), A084254 (S(1,2)), A255698 (S(3,1)), A255699 (S(3,2)), A255700 (S(3,4)), A255701 (S(5,1)), A255702 (S(5,2)), A255703 (S(5,4)).
Cf. A000203 (sigma), A000796 (Pi).
Sequence in context: A292822 A255703 A255700 * A019972 A064406 A299068
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved