This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255465 a(n) = A255464(2^n-1). 2
 1, 6, 22, 90, 358, 1434, 5734, 22938, 91750, 367002, 1468006, 5872026, 23488102, 93952410, 375809638, 1503238554, 6012954214, 24051816858, 96207267430, 384829069722, 1539316278886, 6157265115546, 24629060462182, 98516241848730, 394064967394918, 1576259869579674 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package. Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015. N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015. Index entries for linear recurrences with constant coefficients, signature (3,4). FORMULA G.f.: (1+3*x) / ((1+x)*(1-4*x)). From Colin Barker, Feb 04 2017: (Start) a(n) = (-2*(-1)^n + 7*4^n) / 5. a(n) = 3*a(n-1) + 4*a(n-2) for n>1. (End) MATHEMATICA LinearRecurrence[{3, 4}, {1, 6}, 26] (* Jean-François Alcover, Sep 21 2017 *) PROG (PARI) Vec((1+3*x) / ((1+x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Feb 04 2017 CROSSREFS Cf. A255464. Sequence in context: A047124 A046365 A266184 * A289603 A240049 A078418 Adjacent sequences:  A255462 A255463 A255464 * A255466 A255467 A255468 KEYWORD nonn,easy AUTHOR N. J. A. Sloane and Doron Zeilberger, Feb 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 18:20 EST 2019. Contains 319309 sequences. (Running on oeis4.)