login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255133
Number of unitary divisors of odd Catalan numbers (A038003).
2
1, 1, 2, 8, 64, 2048, 1048576, 68719476736, 18446744073709551616, 166153499473114484112975882535043072, 822752278660603021077484591278675252491367932816789931674304512, 4925250774549309901534880012517951725634967408808180833493536675530715221437151326426783281860614455100828498788352
OFFSET
0,3
LINKS
FORMULA
a(n) = A034444(A038003(n)).
EXAMPLE
A038003(4) = 9694845 which has 64 unitary divisors.
MATHEMATICA
a[n_] := 2^PrimeNu[CatalanNumber[2^n-1]]; Array[a, 12, 0] (* Amiram Eldar, Oct 04 2024 *)
PROG
(Python)
from operator import mul
from functools import reduce
from sympy import factorint
A255133_list, c, s = [1, 1], {}, 3
for n in range(2, 2**16):
for p, e in factorint(4*n-2).items():
if p in c:
c[p] += e
else:
c[p] = e
for p, e in factorint(n+1).items():
if c[p] == e:
del c[p]
else:
c[p] -= e
if n == s:
c2 = 2**len(c)
A255133_list.append(c2)
s = 2*s+1
(PARI) a(n) = 1 << omega(binomial(2^(n+1)-2, 2^n-1)/(2^n)); \\ Amiram Eldar, Oct 04 2024
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Feb 15 2015
STATUS
approved