login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254884
a(n) = Fibonacci(2*n) + ((-1)^n-1)*Fibonacci(n).
3
0, -1, 3, 4, 21, 45, 144, 351, 987, 2516, 6765, 17533, 46368, 120927, 317811, 830820, 2178309, 5699693, 14930352, 39079807, 102334155, 267892404, 701408733, 1836254589, 4807526976, 12586118975, 32951280099, 86267178436, 225851433717, 591285701421, 1548008755920
OFFSET
0,3
FORMULA
Let phi = (1+sqrt(5))/2, p(n) = phi^n - (-phi)^(-n) and FL(n) = 1 + (p(n-1) + p(n+1) + p(2*n-1)) / sqrt(5).
a(n) = FL(-n) - FL(n). By this definition a(n) is a doubly infinite sequence.
a(n) = -a(-n) for all n in Z.
a(n) = A006172(n) - A005522(n).
a(2*n) = A033888(n).
G.f.: x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1).
a(n) = 4*a(n-1) - a(n-2) - 11*a(n-3) + 11*a(n-4) + a(n-5) - 4*a(n-6) + a(n-7).
MAPLE
gf := x -> x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1):
seq(coeff(series(gf(x), x, n+1), x, n), n=0..30);
MATHEMATICA
LinearRecurrence[{4, -1, -11, 11, 1, -4, 1}, {0, -1, 3, 4, 21, 45, 144}, 31]
LinearRecurrence[{3, 2, -9, 2, 3, -1}, {0, -1, 3, 4, 21, 45}, 31] (* Ray Chandler, Aug 03 2015 *)
PROG
(Sage)
A254884 = lambda n: fibonacci(2*n) + ((-1)^n-1)*fibonacci(n)
[A254884(n) for n in range(31)]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Luschny, Mar 09 2015
STATUS
approved