The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254796 Denominators of the convergents of the generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))). 2
1, 4, 25, 200, 2025, 24300, 342225, 5475600, 98903025, 1978060500, 43616234025, 1046789616600, 27260146265625, 763284095437500, 22925783009390625, 733625056300500000, 24966177697226390625, 898782397100150062500, 34178697267502928765625 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))) represents the constant L^2/Pi = 2.188439... = A254794, where L is the lemniscate constant A062539. See A254795 for the numerators of the convergents of the continued fraction.
LINKS
FORMULA
a(2*n) = A007696(n+1)^2 = ( Product {k = 0..n} 4*k + 1 )^2.
a(2*n-1) = 4*n*A007696(n)^2 = 4*n * ( Product {k = 0..n-1} 4*k + 1 )^2.
a(n) = 4*a(n-1) + (2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 4.
a(2*n+1) = 4*(n + 1)*a(2*n); a(2*n) = (4*n + 2)*a(2*n-1) + a(2*n-2).
Empirical e.g.f.: ((-Q(1/2, -3)-Q(-1/2, -3))*P(1/2, (2*x+3)/(2*x-1))+Q(1/2, (2*x+3)/(2*x-1))*(P(1/2, -3)+P(-1/2, -3)))/((1-2*x)^(3/2)*(-Q(-1/2, -3)*P(1/2, -3)+Q(1/2, -3)*P(-1/2, -3))) where P and Q are Legendre functions of the first and second kinds. - Robert Israel, Feb 24 2015
EXAMPLE
54/25 = 2.16, 441/200 = 2.205 etc approach 2.188..
MAPLE
a[0] := 1: a[1] := 4:
for n from 2 to 18 do a[n] := 4*a[n-1] + (2*n-1)^2*a[n-2] end do:
seq(a[n], n = 0 .. 18);
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 4, a[n] == 4 a[n - 1] + (2 n - 1)^2 a[n - 2]}, a, {n, 20}] (* Vincenzo Librandi, Feb 24 2015 *)
PROG
(Magma) I:=[1, 4]; [n le 2 select I[n] else 4*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 24 2015
CROSSREFS
Sequence in context: A182304 A060910 A195260 * A347585 A088159 A301363
KEYWORD
nonn,frac,easy
AUTHOR
Peter Bala, Feb 23 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 18:14 EDT 2024. Contains 373486 sequences. (Running on oeis4.)