Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:11
%S 1,22,11572,265651,139997551,3213845272,1693690359922,38881099834501,
%T 20490265834338301,470383542583947322,247891234370134405072,
%U 5690700059299494866551,2998988132919620198222251,68846088847021746311586172,36281758184170330787958387022
%N Pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099).
%H Colin Barker, <a href="/A254654/b254654.txt">Table of n, a(n) for n = 1..490</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,12098,-12098,-1,1).
%F a(n) = a(n-1)+12098*a(n-2)-12098*a(n-3)-a(n-4)+a(n-5).
%F G.f.: -x*(x^4+21*x^3-548*x^2+21*x+1) / ((x-1)*(x^2-110*x+1)*(x^2+110*x+1)).
%e 22 is in the sequence because it is the 4th pentagonal number and the 3rd centered heptagonal number.
%t CoefficientList[Series[(x^4 + 21*x^3 - 548*x^2 + 21*x + 1)/((1 - x)*(x^2 - 110*x + 1)*(x^2 + 110*x + 1)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Jan 19 2017 *)
%o (PARI) Vec(-x*(x^4+21*x^3-548*x^2+21*x+1)/((x-1)*(x^2-110*x+1)*(x^2+110*x+1)) + O(x^100))
%o (Magma) I:=[1,22,11572,265651,139997551]; [n le 5 select I[n] else Self(n-1)+12098*Self(n-2)-12098*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]]; // _Vincenzo Librandi_, Jan 20 2017
%Y Cf. A000326, A069099, A254652, A254653.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Feb 04 2015