

A254438


Natural numbers k such that k is a multiple of its number of "feasible" partitions.


11



1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 28, 30, 33, 36, 38, 39, 40, 72, 92, 110, 114, 116, 118, 119, 120, 121, 330, 350, 355, 357, 360, 362, 363, 364, 1086, 1088, 1090, 1091, 1092, 1093, 3248, 3270, 3273, 3276, 3278, 3279, 3280, 9792, 9828, 9830, 9834, 9836, 9838, 9839, 9840, 9841, 29376, 29512, 29515, 29517, 29520, 29522, 29523, 29524
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This sequence lists the natural numbers k that are divisible by A254296(k).


LINKS

Table of n, a(n) for n=1..64.
Md Towhidul Islam & Md Shahidul Islam, Number of Partitions of an nkilogram Stone into Minimum Number of Weights to Weigh All Integral Weights from 1 to n kg(s) on a Twopan Balance, arXiv:1502.07730 [math.CO], 2015.


EXAMPLE

For n=1,2,3, A254296(n)=1, so they are in the sequence.
For n=4,6,8,10, A254296(n)=2, so they are in the sequence.
For n=5,9, A254296(n)=2, so they are not in the sequence.


MATHEMATICA

(* This program is not suitable to compute a large number of terms. *)
okQ[v_] := Module[{s=0}, For[i=1, i <= Length[v], i++, If[v[[i]] > 2s+1, Return[False], s += v[[i]]]]; Return[True]];
b[n_] := b[n] = With[{k = Ceiling[Log[3, 2 n]]}, Select[Reverse /@ IntegerPartitions[n, {k}], okQ] // Length];
Reap[Do[If[Divisible[k, b[k]], Print[k]; Sow[k]], {k, 1, 120}]][[2, 1]] (* JeanFrançois Alcover, Nov 03 2018 *)


CROSSREFS

Cf. A254296, A254430, A254431, A254432, A254433, A254435, A254436, A254437, A254438, A254439, A254440.
Sequence in context: A151545 A097274 A322572 * A121539 A257457 A122138
Adjacent sequences: A254435 A254436 A254437 * A254439 A254440 A254441


KEYWORD

nonn


AUTHOR

Md. Towhidul Islam, Mar 01 2015


EXTENSIONS

a(48)a(64) added by Md. Towhidul Islam, Apr 18 2015


STATUS

approved



