login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum plus antidiagonal maximum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14

%I #4 Jan 29 2015 19:57:35

%S 512,3372,3372,21304,35529,21304,136868,406548,409051,136868,881432,

%T 4711324,8533796,4766957,881432,5659548,54122833,174326376,175329586,

%U 54712559,5659548,36317408,623732385,3575408117,6208345944,3587965682

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum plus antidiagonal maximum nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Table starts

%C ........512...........3372.............21304...............136868

%C .......3372..........35529............406548..............4711324

%C ......21304.........409051...........8533796............174326376

%C .....136868........4766957.........175329586...........6208345944

%C .....881432.......54712559........3587965682.........221610958936

%C ....5659548......630430184.......73923120984........7953519068760

%C ...36317408.....7273310228.....1521733260456......284691702793848

%C ..233116252....83838776143....31311650491630....10191880755435432

%C .1496407920...966536400371...644509809793486...365002334364846728

%C .9605229252.11143872854174.13265570942855016.13069563587899442888

%H R. H. Hardin, <a href="/A254390/b254390.txt">Table of n, a(n) for n = 1..283</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 13]

%F k=2: [order 33]

%F k=3: [order 50]

%F Empirical for row n:

%F n=1: [same linear recurrence of order 13]

%F n=2: [order 41] for n>42

%F n=3: [order 68] for n>70

%e Some solutions for n=2 k=4

%e ..0..0..1..1..0..1....0..0..1..1..1..1....0..1..1..1..0..1....1..1..0..1..1..0

%e ..0..0..0..1..0..0....0..1..0..0..0..0....0..0..0..1..0..1....0..0..0..1..1..0

%e ..0..0..1..1..1..1....0..0..1..1..1..0....1..0..1..0..1..1....1..0..0..1..1..1

%e ..1..0..1..0..1..0....1..1..1..0..1..1....1..0..1..0..1..0....1..0..1..1..0..0

%Y Column 1 and row 1 are A253978

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 29 2015