login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254390
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum plus antidiagonal maximum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
512, 3372, 3372, 21304, 35529, 21304, 136868, 406548, 409051, 136868, 881432, 4711324, 8533796, 4766957, 881432, 5659548, 54122833, 174326376, 175329586, 54712559, 5659548, 36317408, 623732385, 3575408117, 6208345944, 3587965682
OFFSET
1,1
COMMENTS
Table starts
........512...........3372.............21304...............136868
.......3372..........35529............406548..............4711324
......21304.........409051...........8533796............174326376
.....136868........4766957.........175329586...........6208345944
.....881432.......54712559........3587965682.........221610958936
....5659548......630430184.......73923120984........7953519068760
...36317408.....7273310228.....1521733260456......284691702793848
..233116252....83838776143....31311650491630....10191880755435432
.1496407920...966536400371...644509809793486...365002334364846728
.9605229252.11143872854174.13265570942855016.13069563587899442888
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 13]
k=2: [order 33]
k=3: [order 50]
Empirical for row n:
n=1: [same linear recurrence of order 13]
n=2: [order 41] for n>42
n=3: [order 68] for n>70
EXAMPLE
Some solutions for n=2 k=4
..0..0..1..1..0..1....0..0..1..1..1..1....0..1..1..1..0..1....1..1..0..1..1..0
..0..0..0..1..0..0....0..1..0..0..0..0....0..0..0..1..0..1....0..0..0..1..1..0
..0..0..1..1..1..1....0..0..1..1..1..0....1..0..1..0..1..1....1..0..0..1..1..1
..1..0..1..0..1..0....1..1..1..0..1..1....1..0..1..0..1..0....1..0..1..1..0..0
CROSSREFS
Column 1 and row 1 are A253978
Sequence in context: A253871 A253544 A253537 * A253985 A253978 A250574
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 29 2015
STATUS
approved