login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digital roots of centered heptagonal numbers (A069099).
2

%I #13 Aug 26 2015 17:14:03

%S 1,8,4,7,8,7,4,8,1,1,8,4,7,8,7,4,8,1,1,8,4,7,8,7,4,8,1,1,8,4,7,8,7,4,

%T 8,1,1,8,4,7,8,7,4,8,1,1,8,4,7,8,7,4,8,1,1,8,4,7,8,7,4,8,1,1,8,4,7,8,

%U 7,4,8,1,1,8,4,7,8,7,4,8,1,1,8,4,7,8

%N Digital roots of centered heptagonal numbers (A069099).

%C The sequence is periodic with period 9.

%H Colin Barker, <a href="/A254375/b254375.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 1).

%F a(n) = A010888(A069099(n)).

%F a(n) = a(n-9).

%F G.f.: -x*(x^8+8*x^7+4*x^6+7*x^5+8*x^4+7*x^3+4*x^2+8*x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)).

%e a(3) = 4 because the 3rd centered heptagonal number is 22, the digital root of which is 4.

%t FixedPoint[Plus @@ IntegerDigits[#] &, #] & /@ FoldList[#1 + #2 &, 1, 7 Range@ 80] (* _Michael De Vlieger_, Feb 01 2015, after _Robert G. Wilson v_ at A069099 *)

%t LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 8, 4, 7, 8, 7, 4, 8, 1},86] (* _Ray Chandler_, Aug 26 2015 *)

%o (PARI) m=9; vector(200, n, (m*n*(n-1)/2)%9+1)

%Y Cf. A001844, A069099.

%K nonn,easy,base

%O 1,2

%A _Colin Barker_, Jan 29 2015