OFFSET
0,1
COMMENTS
This is the sequence of fifth terms of "third partial sums of m-th powers".
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luciano Ancora, Demonstration of formulas, page 2.
Luciano Ancora, Recurrence relations for partial sums of m-th powers.
Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).
FORMULA
From Colin Barker, Jan 30 2015: (Start)
G.f.: -(2754*x^4 - 4081*x^3 + 2107*x^2 - 455*x + 35)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)).
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5). (End)
E.g.f.: exp(x)*(exp(4*x) + 3*exp(3*x) + 6*exp(2*x) + 10*exp(x) + 15). - Elmo R. Oliveira, Sep 16 2024
MATHEMATICA
Table[3 4^n + 10 2^n + 6 3^n + 5^n + 15, {n, 0, 30}] (* Bruno Berselli, Jan 30 2015 *)
LinearRecurrence[{15, -85, 225, -274, 120}, {35, 70, 182, 574, 2054}, 30] (* Harvey P. Dale, Aug 11 2016 *)
PROG
(PARI) vector(30, n, n--; 3*4^n + 10*2^n + 6*3^n + 5^n + 15) \\ Colin Barker, Jan 30 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 29 2015
STATUS
approved