login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253951
A partial double sum of integers: a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0 (* stands for matrix multiplication).
1
0, 1, 5, 9, 20, 23, 42, 52, 69, 77, 113, 119, 165, 177, 190, 214, 279, 291, 366, 379, 399, 422, 517, 533, 599, 625, 679, 701, 829, 846, 986, 1035, 1069, 1105, 1137, 1164, 1339, 1380, 1417, 1449, 1646, 1674, 1883, 1918, 1955, 2008, 2239, 2274, 2420, 2462, 2515, 2559, 2827, 2874, 2929
OFFSET
1,3
COMMENTS
a(n) ~ log(A003418(n))*n, based on the comment by Hans Havermann in A048272 referring to an argument by Gareth McCaughan.
The exact relation is: lim_{n->Infinity} log(A003418(k))*n = Sum_{x=1..n} Sum_{y=1..k} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0.
Compare a(n) to round(log(A003418)*n)= 0, 1, 5, 10, 20, 25, 42, 54, 70, 78,...
LINKS
FORMULA
a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T=A051731*A127093*Transpose(A054524) and T(n,1)=0. (* stands for matrix multiplication)
MAPLE
with(LinearAlgebra):
N:= 200:
A051731:= Matrix(N, N, (n, k) -> `if`(n mod k = 0, 1, 0), shape=triangular[lower]):
A127093:= Matrix(N, N, (n, k) -> `if`(n mod k = 0, k, 0), shape=triangular[lower]):
A054524T:= Matrix(N, N, (k, n) -> `if`(n mod k = 0, numtheory:-mobius(k), 0), shape=triangular[upper]):
T:= A051731 . A127093 . A054524T:
a[1]:= 0:
for n from 2 to N do
a[n]:= a[n-1] + add(T[i, n], i=1..n) + add(T[n, j], j=2..n-1)
od:
seq(a[n], n=1..N); # Robert Israel, Jan 20 2015
MATHEMATICA
nn = 55;
Z = Table[ If[ Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}];
A = Table[ If[ Mod[n, k] == 0, k, 0], {n, nn}, {k, nn}];
B = Table[ If[ Mod[n, k] == 0, MoebiusMu[k], 0], {n, nn}, {k, nn}];
MatrixForm[T = Z.A.Transpose[B]];
T[[All, 1]] = 0;
a = Table[ Total[ T[[1 ;; n, 1 ;; n]], 2], {n, nn}]
(* shows a graph *) Show[ ListLinePlot[a], ListLinePlot[ Accumulate[ MangoldtLambda[ Range[ nn]]]]]
CROSSREFS
Sequence in context: A292773 A228338 A309731 * A102172 A011983 A087940
KEYWORD
nonn
AUTHOR
Mats Granvik, Jan 20 2015
STATUS
approved