OFFSET
1,3
COMMENTS
a(n) ~ log(A003418(n))*n, based on the comment by Hans Havermann in A048272 referring to an argument by Gareth McCaughan.
The exact relation is: lim_{n->Infinity} log(A003418(k))*n = Sum_{x=1..n} Sum_{y=1..k} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0.
Compare a(n) to round(log(A003418)*n)= 0, 1, 5, 10, 20, 25, 42, 54, 70, 78,...
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1002
FORMULA
MAPLE
with(LinearAlgebra):
N:= 200:
A051731:= Matrix(N, N, (n, k) -> `if`(n mod k = 0, 1, 0), shape=triangular[lower]):
A127093:= Matrix(N, N, (n, k) -> `if`(n mod k = 0, k, 0), shape=triangular[lower]):
A054524T:= Matrix(N, N, (k, n) -> `if`(n mod k = 0, numtheory:-mobius(k), 0), shape=triangular[upper]):
a[1]:= 0:
for n from 2 to N do
a[n]:= a[n-1] + add(T[i, n], i=1..n) + add(T[n, j], j=2..n-1)
od:
seq(a[n], n=1..N); # Robert Israel, Jan 20 2015
MATHEMATICA
nn = 55;
Z = Table[ If[ Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}];
A = Table[ If[ Mod[n, k] == 0, k, 0], {n, nn}, {k, nn}];
B = Table[ If[ Mod[n, k] == 0, MoebiusMu[k], 0], {n, nn}, {k, nn}];
MatrixForm[T = Z.A.Transpose[B]];
T[[All, 1]] = 0;
a = Table[ Total[ T[[1 ;; n, 1 ;; n]], 2], {n, nn}]
(* shows a graph *) Show[ ListLinePlot[a], ListLinePlot[ Accumulate[ MangoldtLambda[ Range[ nn]]]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Jan 20 2015
STATUS
approved