login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253638
Number of zeros in the decimal expansion of 5^n.
1
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 0, 1, 2, 0, 3, 3, 2, 2, 3, 3, 4, 1, 1, 1, 4, 7, 4, 4, 5, 4, 3, 4, 6, 6, 3, 5, 2, 2, 0, 3, 4, 5, 6, 7, 8, 6, 6, 5, 7, 8, 8, 6, 8, 4, 3, 3, 6, 5, 4, 4, 8, 7, 4, 4, 3, 1, 4, 6, 4, 4, 6, 5, 6, 7, 6, 4, 4, 4, 6, 9, 12, 8, 5, 9, 7, 6, 4, 2, 9, 8, 5, 5, 3, 4, 6, 6, 9, 14, 12, 12, 12, 12, 13
OFFSET
0,14
COMMENTS
Probably a(58) is the last 0 term.
FORMULA
a(n) = A055641(A000351(n)). - Michel Marcus, Jan 15 2015
EXAMPLE
5^57 = 6938893903907228377647697925567626953125, 2 zeros hence a(57) = 2,
5^58 = 34694469519536141888238489627838134765625, no zeros hence a(58) = 0,
5^59 = 173472347597680709441192448139190673828125, 3 zeros hence a(59) = 3.
MATHEMATICA
Table[Count[IntegerDigits[5^n], 0], {n, 0, 200}]
PROG
(PARI) a(n) = my(d = digits(5^n)); sum(i=1, #d, d[i] == 0); \\ Michel Marcus, Jan 15 2015
CROSSREFS
Cf. A008839 (no zeros in 5^n), A055641 (number of zeros for n), A000351 (5^n).
Sequence in context: A353455 A276516 A346100 * A337586 A345006 A086831
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Jan 07 2015
STATUS
approved