login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253574
Primes p such that digits of p do not appear in p^4.
6
2, 3, 7, 53, 59, 67, 89, 383, 887, 2027, 3253, 5669, 7993, 8009, 9059, 53633, 54667, 56533, 88883, 272777777, 299222299, 383833883, 797769997
OFFSET
1,1
COMMENTS
Primes in A111116.
No further terms up to 10^9. - Felix Fröhlich, Jan 04 2015
No further terms up to 10^10. - Chai Wah Wu, Jan 06 2015
No further terms up to 2.5*10^13 - Giovanni Resta, Jun 01 2015
No further terms up to 10^19 (via A111116). - Michael S. Branicky, Jan 05 2022
EXAMPLE
2 and 2^4=16 have no digits in common, hence 2 is in the sequence.
MATHEMATICA
Select[Prime[Range[1000000]], Intersection[IntegerDigits[#], IntegerDigits[#^4]]=={} &]
PROG
(PARI) forprime(p=1, 1e9, dip=digits(p); dipf=digits(p^4); sharedi=0; for(i=1, #dip, for(j=1, #dipf, if(dip[i]==dipf[j], sharedi++; break({2})))); if(sharedi==0, print1(p, ", "))) \\ Felix Fröhlich, Jan 04 2015
(Python)
from sympy import isprime
A253574_list = [n for n in range(1, 10**6) if set(str(n)) & set(str(n**4)) == set() and isprime(n)]
# Chai Wah Wu, Jan 06 2015
CROSSREFS
Cf. A111116.
Cf. primes such that digits of p do not appear in p^k: A030086 (k=2), A030087 (k=3), this sequence (k=4), no terms (k=5), A253575 (k=6), A253576 (k=7), A253577 (k=8), no terms (k=9), A253578 (k=10).
Sequence in context: A059785 A271041 A270402 * A343557 A238399 A159611
KEYWORD
nonn,base,more
AUTHOR
Vincenzo Librandi, Jan 04 2015
EXTENSIONS
a(20)-a(23) from Felix Fröhlich, Jan 04 2015
STATUS
approved