login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253574 Primes p such that digits of p do not appear in p^4. 5
2, 3, 7, 53, 59, 67, 89, 383, 887, 2027, 3253, 5669, 7993, 8009, 9059, 53633, 54667, 56533, 88883, 272777777, 299222299, 383833883, 797769997 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes in A111116.

No further terms up to 10^9. - Felix Fröhlich, Jan 04 2015

No further terms up to 10^10. - Chai Wah Wu, Jan 06 2015

No further terms up to 2.5*10^13 - Giovanni Resta, Jun 01 2015

LINKS

Table of n, a(n) for n=1..23.

EXAMPLE

2 and 2^4=16 have no digits in common, hence 2 is in the sequence.

MATHEMATICA

Select[Prime[Range[1000000]], Intersection[IntegerDigits[#], IntegerDigits[#^4]]=={} &]

PROG

(PARI) forprime(p=1, 1e9, dip=digits(p); dipf=digits(p^4); sharedi=0; for(i=1, #dip, for(j=1, #dipf, if(dip[i]==dipf[j], sharedi++; break({2})))); if(sharedi==0, print1(p, ", "))) \\ Felix Fröhlich, Jan 04 2015

(Python)

from sympy import isprime

A253574_list = [n for n in range(1, 10**6) if set(str(n)) & set(str(n**4)) == set() and isprime(n)]

# Chai Wah Wu, Jan 06 2015

CROSSREFS

Cf. A111116.

Cf. primes such that digits of p do not appear in p^k: A030086 (k=2), A030087 (k=3), this sequence (k=4), no terms (k=5), A253575 (k=6), A253576 (k=7), A253577 (k=8), no terms (k=9), A253578 (k=10).

Sequence in context: A059785 A271041 A270402 * A238399 A159611 A156585

Adjacent sequences:  A253571 A253572 A253573 * A253575 A253576 A253577

KEYWORD

nonn,base,more

AUTHOR

Vincenzo Librandi, Jan 04 2015

EXTENSIONS

a(20)-a(23) from Felix Fröhlich, Jan 04 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 09:25 EST 2019. Contains 329052 sequences. (Running on oeis4.)