Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 08 2022 19:57:46
%S 1,6,55,540,5341,52866,523315,5180280,51279481,507614526,5024865775,
%T 49741043220,492385566421,4874114620986,48248760643435,
%U 477613491813360,4727886157490161,46801248083088246,463284594673392295,4586044698650834700,45397162391834954701
%N Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).
%C Also positive integers x in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0, the corresponding values of y being A054318.
%C Also indices of centered hexagonal numbers (A003215) which are also hexagonal numbers (A000384).
%C Also indices of terms in sequence A193218 which are the square root of a sum of 5th powers (A000539). - _Daniel Poveda Parrilla_, Jun 10 2017
%H Colin Barker, <a href="/A253475/b253475.txt">Table of n, a(n) for n = 1..1000</a>
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_1.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_2.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_3.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-11,1).
%F a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
%F G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
%F a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - _Gerry Martens_, Jun 04 2015
%F 2*a(n) = 1+A054320(n-1). - _R. J. Mathar_, Feb 07 2022
%e 6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
%o (PARI) Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))
%Y Cf. A000384, A000539, A001844, A003215, A054318, A193218, A253175.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Jan 02 2015